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Fig. 2: The top view of training DCGAN. Dotted 
arrows refer to fake values.
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Fig. 5: t-Stochastic Neighbor Embedding (t-SNE) 
distribution of real and fake lesions, and normal tissue.
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OPTIMAM [3] dataset has 79K processed 
and unprocessed images.

  Read Image I (processed).

  Create groundtruth GT.

  Apply histogram normalisation to get I'.

  Create Mask using non-zero 
  thresholding.

  Using I', GT, and Mask, extract patches.

Outcome: 

5K mass lesion patches 
147K normal tissue patches.
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Fig. 1: Dataset preparation.

Image ID
1.2.840.113...

1
2

3

10

Tissue

Lesion

Tissue

Rejected
Lesion

Mask {0,255} Groundtruth {0,255}

Query Lesion
 Coordinates

Threshold

Patch Extraction

x1x2

y1
y2

range:[0,255]

Original Image

Histogram
Normalization 

 

1

2

3

4

5

Fig. 3: Testing DCGANs using the four modes.
Val and test are using real images only.
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Medical datasets are usually costly to label. This reduces the availability of 
large annotated medical datasets. As a result,  supervised machine learning 
tools, when used in medical applications, commonly suffer from poor 
generalisation. GANs [1] were introduced in 2014 and have been used in 
many different applications ranging from image synthesis to image 
translation and super resolution. In this work, we used Deep Convolutional 
GAN (DCGAN) [2] to generate synthetic mammographic lesion patches of 
size 128 x 128 pixels in order to use them to:

  Augment an imbalanced dataset to improve classification performance.
  Provide specialists with photo-realistic mammographic lesions.

G generates mass and/or calcification.

High realism and diversity.

Best Frechet Inception Distance of 16.

GANs support inliers.

GANs fill in (interpolate) gaps.

GAN + flipping outperforms GAN alone.

GANs are sensitive to hyperparameters

 but powerful.

Synthesis and flipping are independent.

Fig. 4: Real Positive Training Sample Size (k)
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Fig. 6: samples from the real and
the synthetic distribution


