
Universitat De Girona

Computer-aided Surgery and Medical Robotics

Abdomen Opening Prototype
using

Staubli TX-60 Robot

Authors:
Basel Alyafi
Zafar Toshpulatov

Supervisor:
Xavier Cuf́ı

January 20, 2019

1 Introduction and problem definition

Speed and accuracy are two of the main benefits of using robotic systems. One
application in assisting surgeons is to cut the skin of the patient. In this project,
the goal is to open the skin, usually the tummy, using an industrial robot. Skin
cutting is a challenging part of computer-aided surgery and an important task in
medical robotics where accuracy is required in its highest rates. In order to de-
velop a prototype for such an application, the STAUBLI TX-60 6 DoF arm is used.
The procedure of skin cutting has been performed with the help of a surgery knife
(scalpel) in the form of a circle which is described in Figure 1. For safety issues, it
cannot be tested directly on a human body, so, we conducted our experiments on a
soft material (e.g., cushioning).

Figure 1: Skin cutting

2 Preparation

For this project, we chose Staubli TX-60 robot. This is a 6 Degrees of Freedom
industrial robot which is mounted on horizontal base on the floor. Before starting
the project, some installations were performed on the end-effector and the work-
table. The project is divided into two main stages. For the first stage, we selected
the trocar-like metalic as tool and mounted it on the end-effector using scotch and
strips. For the second step, a scalpel (surgical knife) is selected as tool and mounted
with strips. Thanks to Professor Xavier Cufi for providing scalpel. For safety issues,
cushioning is used as a patient representation. We decided to fix the cushioning on
vertical (standing) position using strips which is shown in Figure 2. Moreover, we

1

tried to get familiarized with Staubli Robot by training on MCP, moving the arms,
reading and saving points. Staubli user manuals were of great use.

Figure 2: Supporting point and fixed cushioning in real practice

3 Design and implementation

In this section, we discuss the implementation of the robotic system used for open-
ing the tummy in two steps. The first step is to use the trocar-like tool to read
the landmarks coordinates only (end effector does not matter in this step). Then,
we used, in the second step, the scalpel considering the end effector position and
direction along the trajectory.

3.1 Step 1

This step was important to build a basis for the final step. It actually worked
perfectly to initialize the job manually, then to automate the movement. The main
stages here were to draw landmarks manually, fix the cushioning in the good place,
read landmarks coordinates, and use the points for coding the final software. Finally,
the application was transferred back to the robot control unit.

3.1.1 Draw the landmark using the marker

We started the first step with a simple approach drawing the landmarks over the
cushioning manually using a marker. The landmarks were mainly 8 points (from
point2 to point9) each in the form of an asterisk, this is shown in Figure 3 and 9.
After that, we focused on working on Staubli TX-60.

2

Figure 3: The landmark points in the form of circle

3.1.2 Taking points using Staubli TX-60

The next step is to take the position of trajectory points marked. The new appli-
cation has been created through MCP controller that named baszaf. We created
10 new points in our application using F5 button. Figure 4 shows the initial point
(point1) that was manually defined. Another assisting point was aimed at allowing
the robot arm to be in a good position to start the trajectory without colliding with
the cushioning. We saved this point as point10 and named it as the supporting point
which is shown in Figure 5.

Figure 4: Initial point (point1) Figure 5: Supporting point (point10)

Other landmarks were defined in a similar manner, moving the arm to asterisk then
reading. That was repeated from point2 to point9, see Figure 3. All position of
points have been manually selected moving the arm with the help of 3 modes of
movement (“Joint”, “Frame” and “Tool”). Then we saved all the points and closed
our application for editing in the next step.

3

3.1.3 Editing the application on PC

To move the robot along the path, we used Staubli Robotics Suite program for edit-
ing the application on PC using Val3 ver 6.8. Instructions avaialble in user manual
were used to create cells and applications. The following options were selected as
follows : Staubli TX60, version of the controller 6.8, mount, floor, Horizontal Power
Connector. Then, we transferred our application (baszaf) from the Control Unit
(CS8) MCP of the robot to the computer using transfer manager and setting IP
address 84.88.129.201.

Thereafter, we edited the start and stop functions considering our ten points.
The following routine defines the movement that from initial point1 to supporting
point10, then circle movement from point2 to point9. At the end, it will move
back to supporting point and then finally again to the initial point. The routine
stop moves to the last point1 and it will stop the movement. We set the speed of
movement to 15 percent. But in order to cut slowly, the cutting movement was set
to 1 percent and from supporting point to point2 to 5 percent. To check syntax, we
ran the code and there were no errors in it.

Listing 1: Start()

1 begin
2 userPage ()
3 c l s ()
4 // S ta r t i ng the t r a j e c t o r y
5 putln (”program s t a r t e r ”)
6 enablePower ()
7
8 // speed i s 15 percent
9 mNomSpeed . v e l =15

10
11 // the t r a j e c t o r y has nine po in t s in add i t i on to two i n i t i a l po in t s
12 // move to the i n i t i a l po int
13 //open (f l a n g e)
14
15 movej (po int1 [0] , f l ange , mNomSpeed)
16 putln (” i n i t i a l po int reached ”)
17
18 // move to second support ing po int
19 movej (po int10 [0] , f l ange , mNomSpeed)
20 putln (” support ing po int reached ”)
21
22 // speed i s 5 percent
23 mNomSpeed . v e l=5
24
25 // moving to point2
26 movej (po int2 [0] , f l ange , mNomSpeed)
27 putln (” po int2 reached ”)

4

28
29 // speed i s 1 percent
30 mNomSpeed . v e l=1
31
32 // moving to point3
33 movej (po int3 [0] , f l ange , mNomSpeed)
34 putln (” po int3 reached ”)
35
36 // moving to point4
37 movej (po int4 [0] , f l ange , mNomSpeed)
38 putln (” po int4 reached ”)
39
40 // moving to point5
41 movej (po int5 [0] , f l ange , mNomSpeed)
42 putln (” po int5 reached ”)
43
44 // moving to point6
45 movej (po int6 [0] , f l ange , mNomSpeed)
46 putln (” po int6 reached ”)
47
48 // moving to point7
49 movel (po int7 [0] , f l ange , mNomSpeed)
50 putln (” po int7 reached ”)
51
52 // moving to point8
53 movel (po int8 [0] , f l ange , mNomSpeed)
54 putln (” po int8 reached ”)
55
56 // moving to point9
57 movel (po int9 [0] , f l ange , mNomSpeed)
58 putln (” po int9 reached ”)
59
60 // speed i s 5 percent
61 mNomSpeed . v e l=5
62
63 // moving back to support ing po int
64 movej (po int10 [0] , f l ange , mNomSpeed)
65 putln (” support ing po int reached ”)
66
67 // speed i s 15 percent
68 mNomSpeed . v e l =15
69
70 // moving back to i n i t i a l po int
71 movej (po int1 [0] , f l ange , mNomSpeed)
72 putln (” i n i t i a l po int reached ”)
73 c l o s e (f l a n g e)

5

74 end

Listing 2: Stop()

1 begin
2 movej (point1 , f l ange , mNomSpeed)
3 //open (f l a n g e)
4 putln (” po int1 achieved . Program f i n i s h e d ”)
5 popUpMsg(”Pending movement commands have been cance l ed ”)
6 resetMot ion ()
7 end

3.1.4 Simulation

We also simulated our application using the Emulator and 3D View in order to see
how the robot is moving according to the code that we did , see Figure 6. Figure 7
shows the trajectory of the movement in 3D view.

Figure 6: Successfully simulated application using MCP Emulator

3.1.5 Transfer the code back to the MCP

After a successful simulation, the modified application has been transferred back to
the MCP for a realistic test on the robot. The robot performed the exact movement
we designed and simulated. The capture of step 1 is available at this link: https:

//drive.google.com/open?id=1H5YFA4uTVj2S7tvtPCNHMsWgdyfMn-ng

6

https://drive.google.com/open?id=1H5YFA4uTVj2S7tvtPCNHMsWgdyfMn-ng
https://drive.google.com/open?id=1H5YFA4uTVj2S7tvtPCNHMsWgdyfMn-ng

Figure 7: The last point from different perspectives, the green trace represents the
locations the robots has visited

3.2 Step 2: mount the scalpel and cut

The above steps were tailored to try an experiment with a simple approach. In
this step, we mounted the scalpel on the tool using strips to cut the red highlighted
path on the cushioning which is shown in Figure 9 and the landmark is highlighted
with green. For cutting, the end-effector orientation was necessary to be considered.
Therefore, we reread the points 2-9 again considering the end-effector orientation.
Figure 8 shows how the scalpel changes its orientation along the cutting path. We
saved the new points and transferred them again to the computer. The execution
was successful on Staubli Robotics Suite program as previous. A video describing
the complete scenario from the first until the last point is available at: https:

//drive.google.com/open?id=11dwxK0ezcvvKh8ieaO23fzoALymLFU2I

Figure 8: Rotation of scalpel for avoiding singularity

7

https://drive.google.com/open?id=11dwxK0ezcvvKh8ieaO23fzoALymLFU2I
https://drive.google.com/open?id=11dwxK0ezcvvKh8ieaO23fzoALymLFU2I

Figure 9: The mounted scalpel on the tool

4 Problems encountered

When working on this project, we came across a few obstacles which we eventually
overcame.

• We need to mention that when we first installed our cushioning on horizontal
position, we faced problems with limited workspace of robot and with other
fixed tools on the work-table. Then, we decided to fix the cushioning in a
vertical (standing) position using strips, see in Figure 2.

• We tried to use movec but we faced a problem with the direction of the circle.
The robot was always moving vertically which did not help in our case.

• When we implemented the code and transferred to the MCP in the first step,
the robot sometimes did not take the easy way between two close points (i.e
between supporting point and point2 or point5 and point6). But it took the
long way (clockwise instead of counterclockwise). The issue was fixed by the
supervising Professor Xavier Cufi. The reference frame of the robot was stuck
in our working space and we changed this to another direction.

5 Conclusion

Overall, that was a beneficial experiment on how to use an industrial robotic arm
for a surgical purpose. In reality, surgical robots are much more precise and flexible
than industrial ones, but as said before, the idea is to come up with an application
and try to implement using available tools.

8

	Introduction and problem definition
	Preparation
	Design and implementation
	Step 1
	Draw the landmark using the marker
	Taking points using Staubli TX-60
	Editing the application on PC
	Simulation
	Transfer the code back to the MCP

	Step 2: mount the scalpel and cut

	Problems encountered
	Conclusion

