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1 Introduction

Image segmentation is the process of dividing the image into non-overlapping
regions. It is considered as a hard job for specialists who usually spend long
times specifying pixels to which region they belong. Automatic segmentation
makes that job easier and has a wide range of techniques and a long list of
applications. One of the most promising techniques that has been widely used
in image segmentation is Atlas-based image segmentation. In this report,
atlas is going to be used in the medical domain using brain image of MICCAI
challenge to segment the brain into the following non-overlapping regions:

1. Cerebrospinal Fluid (label 1).

2. White matter (label 2).

3. Gray matter (label 3).

2 Atlas Construction

To construct an Atlas, The main steps are as follows:

1. Register the dataset to one representative image (selecting this image
is discussed later in 2.1).

2. Apply the transformation got from the previous registration on dataset
labels.

3. Average the registered images to get the template image.

4. Extract different regions pixels from registered labels and average them.

To see the bird-eye view, Fig. 1 and Fig. 2 show the complete process of
constructing the template image and labels.
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Figure 1: The pipeline of constructing Atlas template image

2.1 Database Registration

To register the database images, a good representative should be selected
wisely. The way that was done in this report is as follows:

1. Use one image as fixed and all others as moving

2. Register all moving images (Affine Transform) with the fixed one and
measure individual Normalized Cross Correlation.

3. Record metric values

4. Change the fixed image to the next one and repeat until all the images
are considered as fixed once.

5. Pick the one with the most-stable, has short legs!, and accepted-median
metric values, see Fig. 3
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Figure 2: The pipeline of constructing Atlas template labels

After applying the previous algorithm, image 1007 was selected because it
showed relatively robust results. Analysis the box-plot we can see NCC
is varying a lot for dinned MRI as fixed image. Fig. 3 shown MRI data
”1007.nii” and ”1008.nii” giving the maximum median for the NCC as fixed
image compared to others and there is no outliers in both cases.Now if we
compared the outcomes for ”1007.nii” and ”1008.nii” it can be seen that
”1007.nii” has small range for The upper and lower whiskers compared to the
”1008.nii” which represents less score outside the middle 50%. considering all
this factor ”1007.nii” is selected as fixed image for the registration process.
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Figure 3: The boxplot showing the statistics for different fixed images and
corresponding normalized cross correlation

2.2 Elastix Parametric file Parameters Selection

In this section we will discuss about the registration methods and parameter
selection. The desired registration was performed in two steps,first an Affine
(rigid registration) registration was applied for initial alignment, afterwards,
a non-rigid registration namely B-spline registration was applied as a
final registration. Below, first, we discuss parameters selection for the initial
registration and we elaborate to it to final registration.

2.3 Initial Registration

The main characteristic of this parameter file is the AffineTransform. The
idea of doing so is to match the large picture (scale, translation, rotation,
etc..) without going into details. A picture is worth a thousand words. Fig.
4 shows the 141th axial slice from the following:

• Fixed is 1007 always.

• Moving is 1000.

• Result is the registration result.
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Figure 4: Affine Registration, the 141th axial slice

From the figure, it can be read that, (53, 191) point is on the skull of the
registered image while it is background for the fixed image due to unfeasible
(using affine transformation) deformations.

2.3.1 Multi-resolution Framework

Our experience from the previous lab works proved that multi-resolution
framework increases the chance of successful registration. So, here we have
used multi-resolution frame. We used Gaussian pyramid for our registration.
In Elastix parametric file its defines as,

(FixedImagePyramid "FixedRecursiveImagePyramid")

(MovingImagePyramid "MovingRecursiveImagePyramid")

In Elastix, Gaussian pyramid applies smoothing and down-sampling. Next,
we defined the number of resolution or level of pyramid we want to use. In
general 3 resolution is good starting point but as recommended in [1] for 3D
data is better to use up-to 5. we use 5 resolution. The default scheduler
was used smoothing and down-sampling which smooth the fixed image by a
factor of 2 in each dimension.
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2.3.2 Image Sampler

In general, during registration looping over all the voxels of the of the fixed
image is not necessary a subset is enough for the registration. In Elastix Im-
age Sampler defines this sampling strategies with different options as random,
on a grid, etc. We used A random coordinate sampler as it states in [1] to be
performed well in conjunction with the AdaptiveStochasticGradientDescent
optimizers which is been used a optimizer for the registration.

(ImageSampler "RandomCoordinate")

Then we defined the amount of samples, randomly selected in every it-
eration and enforce the selection of new samples in every iteration by the 2
lines below respectively.

(NewSamplesEveryIteration "true")

2.3.3 Interpolation

During Optimization for evaluating the non-voxels position the interpolation
is used. Elastix provides a range of interpolation option such as Nearest
neighbor, Linear and n-th order B-spline. In our registration Linear interpo-
lation is used as it fast and a good trade-off between quality and speed.

(Interpolator "LinearInterpolator")

For generating the final result is Elastix we need to define ResampleIn-
terpolator. Which is shown below,

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

2.3.4 Transformation

We have performed a rigid registration using affine transformation. Affine
transformation allows the translation, rotation,scaling and sharing. The pa-
rameter vector for the affine transformation is a vector of 12 parameters for
3D volume.Elastix using following line in parameter file we defined affine
transformation,

(Transform "AffineTransform")

7



Affine transform require a centre of rotation, by default the geometric
centre of the fixed image is taken, which is recommended [1]. In affine a
important parameter is scale that we need to set. It is recommended in [1] to
let the elastix compute it automatically. the line below was used to perform
this.

(AutomaticScalesEstimation "true")

2.3.5 Metric

To optimize the error and perform better registration elastix provides num-
bers of similarity measures such as, Mean Square Differences (MSD), Nor-
malized Correlation Coefficient (NCC), Mutual Information (MI) etc. In our
registration we used NCC as metric which is defined by this equation.

NCC =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(1)

where xi=fixed image, x = mean of fixed image, yi=Moving
Image, y =mean of moving image.

In Elastix it’s defined as below,

(Metric "AdvancedNormalizedCorrelation")

NCC assumes a linear relation between the intensity values of the fixed
and moving image [1].

2.3.6 Optimizer

In our registration as a optimizer we have used AdaptiveStochasticGradient-
Descent which is advanced version of StandardGradientDescent but avoids
the gain factor initialization problem of StandardGradientDescent. Adap-
tiveStochasticGradientDescent it estimate proper initial value automatically.
It is defined in the Elastix parameter file as below,

(Optimizer "AdaptiveStochasticGradientDescent")

Reasonable values for the parameters was estimated using displacement
distribution using following line.

(ASGDParameterEstimationMethod "DisplacementDistribution")
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2.4 Final Registration (B-spline)

For the final registration we applied Bspline non-rigid registration. For
the final registration all the parameters discussed in the initial parame-
ter Section 2.3 except for final registration the Transformation used it’s
BSplineTransform

In this case, the major difference is that the transformation here is BSplineTransformation.
Fig. 5 shows a comparison with Fig.4.

Figure 5: Using BSpline Transformation, the axial slice 141 becomes more
similar to the fixed one

From Fig.5, it is obvious that point (53,191) in both the registered and
fixed image is on the skull with closer intensities that using the affine trans-
formation.

2.4.1 Transformation:BSplineTransform

The B-spline nonrigid transformation is defined by a uniform grid of control
points. This grid is defined by the spacing between the grid nodes[1].Following
line dine the transformation

(ResampleInterpolator "FinalBSplineInterpolator")

according to [1] most of the literature used cubic B-spline which ic is the
3rd order B-spline. following line was used to define the 3d order B-spline.
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(FinalBSplineInterpolationOrder 3)

Initial and Final registration elastix’s parameter files were shown below.
Elastix Parameter File

Initial Registration (Affine)
(Registration "MultiResolutionRegistration")

(Metric "AdvancedNormalizedCorrelation")

(ImageSampler "RandomCoordinate")

(Interpolator "LinearInterpolator")

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

(Transform "AffineTransform")

(Optimizer "AdaptiveStochasticGradientDescent")

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

(NewSamplesEveryIteration "true")

(NumberOfResolutions 5)

(FinalBSplineInterpolationOrder 3)

(AutomaticScalesEstimation "true")

(ASGDParameterEstimationMethod "DisplacementDistribution")

(FixedInternalImagePixelType "float")

(MovingInternalImagePixelType "float")

(HowToCombineTransforms "Compose")

(ResultImageFormat "nii")

2.5 Atlas Template and Labels

After applying the algorithm described in the previous two sections, the
representative template and transformed (three) labels are available to play
with. Fig. 7, Fig. 8, and Fig. 9 show a few slices of the template image.
Figures 10, 11, 12, 13, 14, 15, 16 show different slices from average labels.
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Final Registration (B-spline)
(Registration "MultiResolutionRegistration")

(Metric "AdvancedNormalizedCorrelation")

(ImageSampler "RandomCoordinate")

(Interpolator "LinearInterpolator")

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

(Transform "BSplineTransform")

(Optimizer "AdaptiveStochasticGradientDescent")

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

(NewSamplesEveryIteration "true")

(NumberOfResolutions 5)

(FinalBSplineInterpolationOrder 3)

(AutomaticScalesEstimation "true")

(ASGDParameterEstimationMethod "DisplacementDistribution")

(FixedInternalImagePixelType "float")

(MovingInternalImagePixelType "float")

(HowToCombineTransforms "Compose")

(ResultImageFormat "nii")

3 Results and Discussion

To evaluate the results, two ways were used: quantitative (Normalized Cross
Correlation) and qualitative (by looking at results on ITK-snap). First, let’s
look at the NCC values for registering the dataset to image 1007, in other
words, 1007 is fixed image and all others are moving. Table 1 shows the values
with the average and standard deviation at the end. Those results were taken
from elastix log files for the final registration (BSplaineTransformation)
and last iteration and resolution. By comparing values for the boxplot shown
in Fig.3 for 1007 as fixed and the median shown in Table 1, the benefit of
using BSplineTransformation becomes clear.

3.1 Registered Tissue Models

To have a look at the distributions of pixels after registration, alg. 1 was
followed.
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Algorithm 1 Tissue model calculation

1: rescale the image to have a predefined range [0,N]
2: extract regions pixels (RCSF , RWM , RGM)
3: H1 = Normalized Histogram(RCSF , N + 1); //N+1 bins
4: H2 = Normalized Histogram(RWM , N + 1)
5: H3 = Normalized Histogram(RGM , N + 1)
6: Hj(i) = Hj(i)/

∑3
j=1Hj(i), for all 0 ≤ i ≤ N do

Moving Image name -NCC value
1000 -0.957
1001 -0.962
1002 -0.917
1006 -0.960
1008 -0.971
1009 -0.966
1010 -0.968
1011 -0.967
1012 -0.965
1013 -0.953
1014 -0.962
1015 -0.959
1017 -0.965
1036 -0.949

Median -0.962
Average -0.958

Std 0.0129

Table 1: Metric values for registering the dataset to 1007

The idea of making the tissue model is to have probabilities that can
be used for segmenting the tissues. At any vertical line, inside available
intensities, the some of probabilities is one, see Fig.6.
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(a) normalized histogram by tissue

(b) tissue model probabilities

Figure 6: Comparison between the normalized histogram and tissues models
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Figure 7: Axial slice = 129, sagittal, and coronal slices in the template image

Figure 8: Axial slice = 142, sagittal, and coronal slices in the template image
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Figure 9: Axial slice = 167, sagittal, and coronal slices in the template image

Figure 10: Axial=115, sagittal, and slices from the template label of CSF
region
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Figure 11: Axial slice = 132, from the template label of White matter (WM)
region

Figure 12: Axial = 147, sagittal, and coronal slices from the template label
of White matter (WM) region
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Figure 13: Axial = 173, sagittal, and coronal slices from the template label
of White matter (WM) region

Figure 14: Axial slice = 136 of average label 3 (Gray matter)
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Figure 15: Axial slice = 149 of average label 3 (Gray matter)

Figure 16: Axial slice = 171 of average label 3 (Gray matter)
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1 Introduction and Problem Definition

Brain tissue segmentation is one of the primary tools in analyzing brain tissues. In previous
labs, Expectation Maximization (EM) and Atlas Construction strategies ,which are widely
used approaches for brain tissue segmentation, were implemented from scratch. This course-
work is a continuation of our Registration Lab Where we built probabilistic atlas for brain
tissue segmentation. We are going to combine EM with Atlas for segmenting CSF (Cere-
brospinal fluid) with label 1, WM (White Matter) with label 2, and GM (Gray Matter) with
label 3. In this report, we propose a solution of 5 complexity levels, namely:

1. Applying atlas based segmentation and extracting the probabilistic atlas.

2. Finding the distribution of the training images for each region and using it to assign
labels.

3. Implementing the Bayesian framework by joining the upper two results.

4. Applying EM and extracting probabilities for each voxel belonging to CSF, WM or
GM, starting from Bayesian labels.

5. The joint framework, Bayesian EM: combining EM and Bayesian framework.

At the end of this report, analysis of the outcome of the joint framework compared to single
frameworks is provided.

2 Algorithm Design

All the phases of the algorithm are discussed here with the equations needed. The order of
the sections is similar to the one used in the algorithm.

2.1 Atlas-based Segmentation

To construct an atlas, the main steps are as follows:

1. Register the dataset to one representative image (selecting this image is discussed
broadly in part-1 of this Coursework (MIRA part)).

2. Apply the transformation got from the previous registration on dataset labels.

3. Average the registered images to get the template image.

4. Extract different regions’ pixels from registered labels and average them.

To see the bird-eye view, Fig.1 and Fig. 2 show the complete process of constructing the
template image and labels.
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Figure 1: The pipeline of constructing Atlas template image

Figure 2: The pipeline of constructing Atlas template labels.

After constructing the atlas template image and template labels, the ultimate goal is to
assign label to the test image. To do that, the template has to be registered (as moving) with
every test image (as fixed). The resulting transformation is applied thereafter on template
labels (for three regions separately) and the index of the maximum is taken lastly. Algorithm
1 shows the routine briefly.

Algorithm 1 Atlas-based Segmentation

1: T = Register(fixed = template image,moving = test image)
2: Using T, Transform template labels (CSF prob,WM prob,GM prob) to get
CSF probT ,WM probT , GM probT

3: predicted labels = argmax(CSF probT ,WM probT , GM probT )
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2.2 Tissue Models

Tissue models means that each region (CSF, WM, GM) has a distribution which can be
depicted by analyzing a large number of images of the same machine. Unfortunately, only
15 images are there to analyze, though, they are good enough. Every training image is loaded
along with its labels. Regions are extracted and the histogram is calculated (not normalized
yet). The previous process is repeated for all training images and histograms are accumulated
accordingly (one histogram accumulator for each region). Histograms are normalized at the
end by dividing by the total corresponding-region pixels number. Algorithm 2 shows the
process. Where, 4096 bins were used for the histograms of the three regions, that is because
images had maximum intensities around this value and compressing the distributions might
have caused more overlapping among regions.

Algorithm 2 Region-wise distribution

1: initialize all variables with zeros (C1
1C

1
2 . . . C

1
4096, C

2
1C

2
2 . . . C

2
4096, C

3
1C

3
2 . . . C

3
4096)

2: for all training images do
3: rescale the image to have integer values (0 to 4095)
4: extract regions pixels
5: accumulate N1, N2, N3 with corresponding number of pixels.
6: compute the histogram region wise (H1, H2, H3).
7: accumulate with old ones C1+ = H1, C2+ = H2, C3+ = H3.
8: end for
9: normalize histograms

C1

N1
,
C2

N2
,
C3

N3

10: apply moving-average window of width 45 centered.
11: for each intensity, scale the three histograms by the sum of all histograms at that inten-

sity.

Ci
j =

Ci
j∑3

i=1 C
i
j

, ∀i = 1, 2, 3; j = 1, 2, . . . 4096

Where, the normalizing step was mainly for using the distribution as a proper probability
distribution (the sum at any intensity should be one). While, the filtering step was to fill
the holes in the distribution (due to some intensities not available in images) and reduce
perturbations, see Fig.4. After running the algorithm specified in Algorithm 2, on all 15
training images, the result was as shown in Fig.3
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Figure 3: Tissue model before scaling and filtering

Figure 4: Tissue model after scaling and filtering

So, the probability for one pixel with coordinates (x, y) with intensity I(x) (after rescaling
to integer value between 0 and 4095) to belong to CSF, for example, is:

p1(I(x, y)) = C1
I(x,y)

It might be needed to add one to the intensity value when dealing with systems of 1 indexing
like Matlab, and similarly for other regions. To find the label of that pixel using tissue models

label(x, y) = argmax
i

(Ci
I(x,y))
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2.3 Bayesian Framework

In Bayesian Framework, tissue models probabilities were multiplied by probabilistic atlas
ones. Alg. 3 shows that procedure.

Algorithm 3 Bayesian Framework

Bayesian probabilities for pixel with coordinates (x,y) and intensity I(x,y):

bayes CSF (x, y) = C1
I(x,y) ∗ CSF probT (x, y)

bayes WM(x, y) = C2
I(x,y) ∗WM probT (x, y)

bayes GM(x, y) = C3
I(x,y) ∗GM probT (x, y)

To find the predicted label using the Bayesian framework:

label(x, y) = argmax(bayes CSF (x, y), bayes WM(x, y), bayes GM(x, y))

2.4 Expectation Maximization (EM)

Expectation Maximization (EM) is one of the most popular approaches to maximize the
likelihood. The basic idea of the EM algorithm is to, estimate the distribution of the variable
given data and current value of the parameters which called E-step and Maximizing the joint
distribution of the data and the hidden variable. Starting from initialization, expectation,
maximization, and stopping criteria. To make all the symbols used clear, a brief definition is
given in Table 1. Three Gaussian Mixture Models are assumed. Each pixel is processed and
the probability of belonging to each mixture model is calculated. The maximum probability
of every observation is found and the corresponding index is considered the predicted label
what is called soft assignment of pixel label.

Symbol meaning
N number of observations (relative to the context)
K number of distinct classes
µk the kth class mean
Σk the kth class covariance matrix
αk the kth mixture weight
wik the probability that xi belongs to class k
N − k the effective number of observation belonging to class k

Table 1: Symbols definition

2.4.1 Initialization

Usually, EM is initialized with either Kmeans or randomly. However, in this coursework, a
valuable information is available and gives a very good starting point for EM. This infor-
mation is the registered Atlas (after step 3 in Algorithm 1). Clusters are distinguished by
having different labels. Another important point is that the randomness of Kmeans (which
comes from the random initialization of kmeans) is avoided by a robust initialization. To be
familiar with notations used here, have a look at Table 1.
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2.4.2 Expectation

In this step, the weights for every pixel being belonged to each class are calculated. Those
weights are computed using the Gaussian mixture model multiplied (eq(3)) by alpha (which
is in the first iteration, the proportion of the corresponding class :number of class elements
divided by the total number of elements). To use the mixture model, the mean and covariance
matrix for each class are computed using equations (1, 2), respectively. The new weights are
computed via eq(4).

µnewk = 1
Nk

∑N
i=1wik . x

i (1)

σnewk = 1
Nk

∑N
i=1 wik.(x

i − µnewk )(xi − µnewk )′; 1 ≤ k ≤ K (2)

p(x|θk) = 1
(2π)d/2|Σ|1/2 e

− 1
2

(x−µk)′ Σ−1
k (x−µk); θk := µk,Σk (3)

wik = p(xi|θk).αk∑K
m=1 p(xi|θm).αm

(4)

2.4.3 Maximization

In this step, the new mixture weights are computed via the following set of equations.
Where, Nk is the effective number of observations belonging to the kth class eq(5), and alpha
is updated using eq (6).

Nk = 1
N

∑N
i=1wi,k (5)

αk = Nk

N
(6)

2.4.4 Stopping Criteria

To recognize convergence, a small change (if any) of the order of 10−3 in the log likelihood
is used, while, a maximum number of iterations is used to assure the stability. The log
likelihood is defined in eq (7).

log l(Θ) =
N∑
i=1

log
K∑
k=1

αk.p(xi|θk) (7)

2.5 Bayesian EM

To implement EM in conjunction with the bayesian fraemwork, Fig. 5 demonstrates a
pictorial presentation.
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Figure 5: The pipeline for EM+Atlas based brain tissue segmentation.

In the EM Probability.m function, for getting probability for each pixels either belong
to CSF or GM or WM, test image has been passed along with the Bayesian labels (to cluster
pixels). The way of implementing Expectation Maximization algorithm was described in
a previous lab report (MISA lab report-2). This function will return three probabilistic
volumes for CSF, WM, and GM as shown in Fig. 5. The pipeline for creating probabilistic
atlas for CSF, GM, and WM has been described in Session-1 of this course work (MIRA
report) with qualitative and quantitative performances.

Now, we have got three 3D probabilistic volumes (CSF Prob., GM Prob, WM Prob.)
from EM pipeline and three 3D probabilistic volumes(CSF Prob., GM Prob, WM Prob.)
from the bayesian framework pipeline as shown in Fig. 5 which were multiplied element-
wise to get a single volumes for each of CSF, GM, and WM. Afterward, “Argmax” operator
has been applied on the 4D volume for each pixel to assign the tissue label either CSF or
GM or WM.

3 Results and Discussion

In this section, we show three main cases, namely:

• Atlas with the complete dataset.

• MNI atlas.

• Atlas with the small training dataset.

For each case, the results are discussed region-wise using box plots considering all the five
complexity levels mentioned in Section 1. Additionally, image 1004 was selected with the
axial slice 150 to show some qualitative results.

3.1 Atlas with the complete Training Dataset (15 images)

In this case, 15 training images were available to train the system, i.e., to learn tissues
distributions and prior region locations. For probabilistic atlas, image 1007 was used as
fixed and all others as moving, the registered moving labels were averaged and template

8



labels probabilities for three regions were used thereafter for complexity level 1 (atlas only).
Template labels probabilities were registered to all test images individually, see Fig.1, Fig.2,
Algorithm 1. Bayesian then was done by multiplying the previous results by the tissue mod-
els and passed as initialization to EM, the final EM probabilities were again multiplied by
the bayesian probabilities and argmax was done finally. Fig.6 (a) (b) (c) show the box plots
for the three regions with the five complexity levels.
To have a few words about the box plots, First, for CSF, it is clear that the Bayesian frame-
work is outperforming other methods (median is higher than others), additionally, it is more
stable due to the small box it has with short whiskers, see Fig.6(a). However, for the White
matter, the fifth level of complexity (EM multiplied by Bayesian) has the highest median
and maximum among others with acceptable stability (whiskers lengths), see Fig.6(b). Fi-
nally, for the Gray matter, again, the last method has outperformed other methods (highest
median, highest maximum, best minimum). From the three previous figures, it is clear that
the last algorithm is behaving relatively good.
Qualitatively speaking, Fig.10 shows five different segmentation results using the five meth-
ods. The continuous improvement can be seen by looking at the decreasing color area (green
area comes from the groundtruth, while, purple area comes from the predicted labels) in the
overlay images.

3.2 MNI Atlas Results

With MNI, one 4D object was given containing the mask, CSF probabilities, White matter
probabilities, Gray matter probabilities. Those probabilities were extracted to be used as a
probabilistic atlas ( outcome of Fig. 2). A template image was given as well (the outcome
of Fig.1). For tissue models, the avaialble training set (15 images) was used. To show the
results of this MNI atlas, Fig.7 demonstrates the box plots. Firstly, for CSF segmenta-
tion, Bayesian framework showed good results, while, on the other hand, EM showed high
maximum but unstable DSC values. Moreover, after multiplying EM with Bayesian, the
DSC drops by a little amount. So, the chief here is the Bayesian framework, see Fig.7(a).
Secondly, for White matter, here, EM wins with the highest median and maximum, with
acceptable length of the whiskers, see Fig.7(b). Thirdly and finally, for gray matter results,
Fig.7(c), EM is still the boss providing good median and stability. To sum up for MNI
results, EM is giving really good and stable results for WM and GM but CSF result is not
acceptable, so, it would be wiser to use Bayesian EM.
Qualitatively speaking, Fig.11 shows five different segmentation results using the five meth-
ods. The continuous improvement can be seen by looking at the decreasing color area (green
area comes from the groundtruth, while, purple area comes from the predicted labels) in the
overlay images.

3.3 Atlas With the Small Training Dataset

In this case, only four images were available in the dataset, 1008 was found to be the best
option to use as fixed and others as moving. See Fig.8 for explaining the reason beyond that.
All three images were registered to 1008.
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(a) CSF boxplot with the complete training set

(b) WM boxplot with the complete training set

(c) GM boxplot with the complete training set

Figure 6: DSC comparison between different methods and regions using Atlas with the
complete dataset
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(a) CSF boxplot using MNI atlas

(b) WM boxplot using MNI atlas

(c) GM boxplot using MNI atlas

Figure 7: DSC comparison between different methods and regions using MNI atlas
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Figure 8: NCC comparison of different registrations

After that, tissues models were computed using Algorithm 2 for the four images only.
To show results of this case, Fig.9 does the job. As can be seen from Fig.9(a) for CSF,
Bayesian and Bayesian EM are giving close results with similar distributions. While, for
White matter, Fig.9(b) surprisingly, tissue models only were able to give challenging results.
For Gray matter, Fig.9(c) Bayesian and Bayesian EM are both highly acceptable. Overall,
Bayesian EM is again and for the third time is selected as best choice.
Qualitatively speaking, Fig.12 shows five different segmentation results using the five meth-
ods. The continuous improvement can be seen by looking at the decreasing color area (green
area comes from the groundtruth, while, purple area comes from the predicted labels) in the
overlay images.

3.4 Discussion

Quantitatively and qualitatively, Bayesian EM proved more accurate than other methods
using either the complete dataset, the small dataset, or the MNI template. Comparing
Fig.10(e), Fig.11(e), and Fig.12(e), it is clear that the complete dataset did better than the
small one due to the fact that the larger the dataset, the more accurate the tissue models will
be, which will enhance the whole chain. MNI was performing a bit less than the complete
atlas owing to coming probably from a different modality brand (different distributions).
So far, five different methods were exhaustively tested on different scales of the problem,
Bayesian EM showed exceptional robustness among others and is proposed as a solution for
the problem of brain tissue segmentation.
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(a) CSF boxplot using small atlas

(b) WM boxplot using small atlas

(c) GM boxplot using small atlas

Figure 9: DSC comparison between different methods and regions using small atlas
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(a) atlas segmentation, dices (CSF, WM, GM) = 44, 71, 80

(b) tissue model segmentation, dices = 18, 90, 86

(c) Bayesian framework segmentation, dices= 67, 90, 94

(d) EM segmentation, dices= 54, 92, 94

(e) Bayesian EM segmentation, dices= 64, 93, 95

Figure 10: Image 1004, axial slice 150, qualitative evaluation of the five methods using Atlas
with the complete dataset
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(a) atlas segmentation, dices (CSF, WM, GM) = 10, 64, 77

(b) tissue model segmentation, dices = 18, 90, 86

(c) Bayesian framework segmentation, dices= 13, 84, 87

(d) EM segmentation, dices= 60, 92, 94

(e) Bayesian EM segmentation, dices= 12, 87, 89

Figure 11: Image 1004, axial slice 150, qualitative evaluation of the five methods using MNI
Atlas
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(a) atlas segmentation, dices (CSF, WM, GM) = 28, 67, 76

(b) tissue model segmentation, dices = 13, 87, 81

(c) Bayesian framework segmentation, dices= 34, 82, 87

(d) EM segmentation, dices= 62, 87, 89

(e) Bayesian EM segmentation, dices= 33, 85, 88

Figure 12: Image 1004, axial slice 150, qualitative evaluation of the five methods using small
Atlas
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