
Computer Aided Diagnosis
Lab 1: Image Segmentation (Active Shapes Models)

Submitted By

Md. Kamrul Hasan
Basel Alayfi

Fakrul Islam Tushar

Submitted To
Arnau Oliver, PhD
Xavier Llado, PhD

Kaisar Kushibar
{arnau.oliver,xavier.llado,kaisar.kushibar}@udg.edu

December 10, 2018

Contents
1 Introduction and Problem Definition 2

2 Algorithm Analysis 2
2.1 Shape Representation . 2
2.2 Procrustes Analysis . 2
2.3 Principle Component Analysis (PCA) . 3
2.4 Active Shapes Model . 4

3 Results Analysis 6
3.1 Little deformations, case image 0001 . 6
3.2 Medium deformation, case image 0000 . 7
3.3 Medium deformations, case 0024 . 8
3.4 Large deformations, case 0040 . 9
3.5 Larg deformations, case 0063 . 9

4 Conclusion and Future work 10

A How To Use 10
A.1 Testing active_shapes script . 10

1

{arnau.oliver, xavier.llado, kaisar.kushibar}@udg.edu

1 Introduction and Problem Definition
Image Segmentation is one of the prior steps to most of the image analysis tasks, specially if it
relates to medical imaging. Among many other approaches, statistical shape model for image
segmentation is a common practice in computer vision society. In this course work, we get in-
troduced to one of these statistical shape models called Active Shape Model (ASM). ASM was
implemented from scratch for hand shapes using the provided data of hands having 40 examples
with 56 landmarks of each. The crucial objectives of this project are as follows:

• To understand the concept of Active Shape Model (ASM) and related theories to implement
ASM from scratch using the provided data.

• To understand and implement Procrustes Analysis for aligning, transforming; scaling and
rotating, the different shapes to the reference shape.

• To apply Principle Component Analysis (PCA) for reducing the dimensions of the feature
space.

2 Algorithm Analysis
The mathematics underlying for ASM implementation are fairly straightforward. Procrustes anal-
ysis and Principal components analysis (PCA) are used to align the shapes and to find the major
axes of a cloud of points in a high dimensional space, respectively [1]. Algorithms used for this
project implementation are described briefly as follow.

2.1 Shape Representation
Any shape can be represented by a judiciously-chosen set of points, aka features, each of which is
a k-dimensional vector. Those N feature points are stacked into a long vector having length kxN.
Mathematically, it can be written as follow by considering dimension k = 2 in Eq. (1).

x =
[
p1, p2, p3, . . . pN

]T (1)

Where, pi = (xi,yi) f or i = 1,2,3, . . . ,N. If we have M training sample, we generate M such
vectors as like Eq. (2).

X =
[
x1, x2, x3, . . . xM

]
(2)

Before staring with the active shape analysis, statistical analysis has to be performed on those
vectors to bring them to same co-ordinate frame. The shape of an object is normally considered to
be independent of the position, orientation and scale of that object [1].

2.2 Procrustes Analysis
Procrustes analysis is the series of statistical methods that is used for to analyze the distribution of
a set of shapes. The algorithm that have been followed to implement Procrustes analysis is shown
in Fig. 1 which is described briefly as follows:

1. Translation and Normalization: Translation brings the shapes to its centre of gravity that
is at the origin (i.e. its centroid). Translation can be done by the following Eq. (3) and Eq.
(4).

x̄ =
x1 + x2 + x3 ++ xN

N
and ȳ =

y1 + y2 + y3 ++ yN

N
(3)

2

Figure 1: Block diagram for Procrustes analysis

(xi,yi)→ (xi− x̄,yi− ȳ) f or i = 1,2,3,,N (4)

Normalize each shape so that it satisfies the Eq. (5).

|x̄|=
√

x̄1
2 + ȳ1

2 + x̄2
2 + ȳ2

2 ++ x̄N
2 + ȳN

2 = 1 (5)

2. Singular Value Decomposition: After bringing centre of gravity to the origin and perform-
ing normalization, vector x can be expressed as follow.

x=UΣV T =

[
u1 u2 . . . ur︸ ︷︷ ︸ ur+1 . . . um

]︸ ︷︷ ︸
Col,x Nul,xT



σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
. . .
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
. . .
0 0 . . . 0 0 . . . 0





vT
1

vT
2
. . .
vT

r
vT

r+1
. . .
vT

n



Row,x

Nul,x

So, orthogonal or rotational matrix, R can be written as follows Eq. (6) from the Singular
Value Decomposition (SVD) [2] of the vector x. As well as scaling will be as in Eq. (7).

R =UV T (which means dot product o f U and V T) (6)

Scale f actor =
k

∑
i=1

Σ(i); k is the dimension o f each landmark. (7)

3. Shape Alignment: After getting rotation and scaling parameters. The following process is
applied on every shape in the data set, considering the mean of the shapes as the reference.
Following mathematical operation Eq. (8) can be performed to get the aligned shape.

AlignedShape = (Shape ·RT)∗Scale f actor (8)

2.3 Principle Component Analysis (PCA)
The foremost reason for using PCA is to approximate the shape of any landmark using a small
number of parameters. The steps to implement PCA are given in Algorithm 1.

3

Algorithm 1 Steps for PCA implementation, part 1
Step-1: Compute the mean of the feature vector using Eqs. (9, 10, 11).

x̄ j =
1
M

M
∑

i=1
xi j ; j = 1,2,3, . . .N (9)

ȳ j =
1
M

M
∑

i=1
yi j ; j = 1,2,3, . . .N (10)

p̄ = [x̄, ȳ]T ∈ℜ2N (11)

Step-2: Co-variance matrix can be calculated using Eq. (12).

Σ2Nx2N =
1

M−1

M

∑
i=1

(pi− p̄)(pi− p̄)T ; i = 1,2,3, . . .M. (12)

Step-3: Compute the eigen vectors ui and eigen values λi of the covariance matrix. Sort the
eigen values descendingly, then, reorder the eigen vectors correspondingly.
Step-4: Choose the t eigen vectors (columns of P) that correspond to the t largest eigenvalues
that satisfy Eq. (13).

t
∑

i=1
λi

M
∑

i=1
λi

≥ 0.98 (13)

2.4 Active Shapes Model
The design was mainly inspired from the description found in [3]. The main algorithm followed
was algorithm 2. Mathematically, b can be written as b = [b1,b2, . . . ,bt]

T . Varying the weights
bi enables us to explore the allowable variations in the shape. To clarify the values used for basic
parameters, table 1 is given.

Parameter Value
max_iterations 140

norm_range 13
N (number of landmarks per shape) 56

M (number of shapes) 40

Table 1: Parameters definition

Where max iterations was enough for almost all the shapes to converge to a good solution.
norm range was tested for different values, and 13 was a decent trade off between detecting nearest
edges and preventing overlapping with neighbouring points.

Algorithm 2 Core protocol
1: apply Procrustes on all shapes
2: apply PCA on the aligned shapes, algorithm 1
3: initialize using algorithm 3 to get initial s,θ , tx, ty
4: for max_iterations do
5: deform the model to match image edges using algorithm 4
6: end for

4

Algorithm 3 Initialization algorithm
draw the model with initial scale, theta, and translation parameters
use the mouse wheel to scale up/down the model
use the left mouse click and drag to translate the model
use mouse right drag to control theta.

Algorithm 4 Matching model points to target points
1: initialize the shape parameters to zeros, i.e., b = [0 . . .0]T . Initial shape will be only the mean

one (x̄).
2:

x = x̄+P b (14)

3: transform x into X in the image space (using initial transformation parameters for the first
iteration)

4: find image points, Y, using algorithm 5
5: find the pose parameters (tx, ty,s,θ) which best align the model points x to the current points

Y using algorithm 6.
6: project Y onto the model co-ordinate frame by inverting the transformation T using Eq. (15).

y = T−1
tx,ty,s,θ (Y) = T−tx,−ty,1/s,−θ (Y) (15)

7: Step-5: Update the model parameters to match y using Eq. (16), with constraints on b.

b = PT (y− x̄); −3×
√

λi ≤ bi ≤ 3×
√

λi, 1≤ i≤ t (16)

Algorithm 5 Finding maximum edges along the norms
1: compute sobel gradient magnitude of gray image
2: for all model points, pi do
3: compute the normalized tangent at xi

p̂i =
pi+1− pi−1

|pi+1− pi−1|
; p̂i = [x̂i, ŷi] ∈ℜ

2N

4: compute points coordinates along the norm

nxi = xi− kŷi

nyi = yi + kx̂i

∀k ∈ {−norm_range, . . . ,0, . . . ,norm_range}

ni = [nxi,nyi] ∈ℜ
2(2∗norm_range+1)

5: end for
6: find image coordinates of maximum gradient along each norm

Yi = argmax
x,y

(grad[nyi,nxi]); i = 1,2, . . . ,N

5

Algorithm 6 aligning two shapes
1: for both shapes, xi do
2: centralize the shape

x̂ = x− x̄; x̄ = [mean(x1,x2, . . . ,xN),mean(y1,y2, . . . ,yN)] ∈ℜ
2

3: end for
4: a = (x̂mov . x̂ f ix)/|x̂mov|
5:

b =
n

∑
i=1

(xxmov ∗yx f ixed −yxmov ∗xx f ixed)

6: scale =
√

a2 +b2

7: θ = arctan(b/a)

3 Results Analysis
In this section, five results are shown with the parameters used on the initialization pictures them-
selves to make them reproducible. Use tips are available as well on the figure to make it easy to use
them. All and additional images are avaialable in images folder attached. This algorithm is highly
sensitive to initialization, fairly-far initial positions may result in completely unexpected results.

3.1 Little deformations, case image 0001
In this case, pretty good initial positions were possible to achieve. Figure 2 shows the initial pose.
For reproducing the results, the used parameters are shown at the top of the figure. Use instructions
are just under the image. Figure 3b and Figure 3a show relatively good results with fingers being
matched. Only a few iterations (less than 40) were enough to converge.

Figure 2: Initial positions for image 0001

6

(a) deformed model (green line) imposed over
the image 0001

(b) Last iteration for image 0001

Figure 3: last iteration (right) and result (left) for image 0001

3.2 Medium deformation, case image 0000
In this case, the hand shape was fairly similar to the model (after scaling, translating and rotating),
see Figure 4 below. To detect edges, sobel filter was used as in Figure 5b. It is obvious that
edges are not perfect due to noise and illumination differences. Additionally, in Figure 5a, the
norms could detect the edges of the nails, and no farther due to the range norm used. The resulted
parameters are shown on top of the figure.

Figure 4: Initialization for image 0000

7

(a) deformed model (green line) imposed over
the image 0000

(b) Last iteration for image 0000

Figure 5: last iteration (right) and result (left) for image 0000

The thumb was quite far in the initial pose which caused the mismatch in the result for that
finger.

3.3 Medium deformations, case 0024
In this case, fingers were almost closed with quite little distances among them. The initialization
was a careful process to achieve acceptable results. Figure 6b and Figure 6a show the initial pose
and the final result respectively.

(a) deformed model (green line) imposed over
the image 0024

(b) Last iteration for image 0024

Figure 6: last iteration (right) and result (left) for image 0024

8

3.4 Large deformations, case 0040
In this case, the hand was opened almost completely, fingers were far from each other. The initial-
ization process had to be really precise to get acceptable results as the case of image 0000. Figure
7b shows the initial pose, while Figure 7a shows the final result. The algorithm was able to catch
fingers edges but not the tips due to nails and skin edges.

(a) deformed model (green line) imposed over
the image 0040

(b) Last iteration for image 0040

Figure 7: last iteration (right) and result (left) for image 0040

3.5 Larg deformations, case 0063
In this case, the hand was fairly different from the model. Figure 8b and Figure 8a show the initial
pose and the results respectively.

(a) deformed model (green line) imposed over
the image 0063

(b) Last iteration for image 0063

Figure 8: last iteration (right) and result (left) for image 0063

9

4 Conclusion and Future work
So far in this report, different results for different cases were shown. Fingers were detected in most
cases and the technique worked properly. The main difficulty was in adjusting good initialization
positions which was hardly ever possible in some cases. What can be done to improve the perfor-
mance and ease the process is to utilize multi-resolution ASM which starts with a small version of
the image and propagates the parameters from one layer to the next. In that case the quality will
be enhanced significantly.

A How To Use
To test the code, it is highly recommended to use PyCharm for that, however, to test Procrustes, it
is suggested to use Spyder. All that due to issues related to MAtplotlib library.

A.1 Testing active_shapes script
To test active shapes algorithm with different images and initializations, a few things need to be
modified, see Figure 9

Figure 9: code lines may need to be modified in order to change default settings

In order to run a different image, the name of the image has to be modified. Scale, theta,
translate_x and translate_y can be controlled through the figure that comes up at the beginning of
the run, see Figure 2 for example. Figure 10 tells the story of controlling the scale, theta, translation
parameters in a convenient way.

Figure 10: Initialization manual

10

References
[1] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active Shape Models-Their Training

and Application,” Computer Vision and Image Understanding, vol. 61, no. 1, pp. 38-59, 1995.

[2] Lecture on Singular Value Decomposition by Justin Solomon. CS 205A: Mathematical
Methods for Robotics, Vision, and Graphics. Avaiable at: graphics.stanford.edu/
courses/cs205a-13-fall/assets/lecture_slides/svd.pdf

[3] Tim Cootes, “Introduction to Active Shape Models ”.

11

graphics.stanford.edu/courses/cs205a-13-fall/assets/lecture_slides/svd.pdf
graphics.stanford.edu/courses/cs205a-13-fall/assets/lecture_slides/svd.pdf

	Introduction and Problem Definition
	Algorithm Analysis
	Shape Representation
	Procrustes Analysis
	Principle Component Analysis (PCA)
	Active Shapes Model

	Results Analysis
	Little deformations, case image 0001
	Medium deformation, case image 0000
	Medium deformations, case 0024
	Large deformations, case 0040
	Larg deformations, case 0063

	Conclusion and Future work
	How To Use
	Testing active_shapes script

