
Introduction Materials Methods Results Conclusions

GAN (Generative Adversarial Networks) for realistic data
augmentation and lesion simulation in x-ray breast imaging

Basel Alyafi1

Supervisors: Robert Marti, Oliver Diaz

1Erasmus Mundus Master’s in Medical Imaging and Applications (MAIA)
UB, UNICALM, UdG

August 8, 2019

Basel Alyafi University of Girona GANs for data augmentation August 8, 2019 1 / 25



Introduction Materials Methods Results Conclusions

Outline

1 Introduction

2 Materials

3 Methods

4 Results
Main Results
Further Inspection

5 Conclusions

Basel Alyafi University of Girona GANs for data augmentation August 8, 2019 2 / 25



Introduction Materials Methods Results Conclusions

Outline

1 Introduction

2 Materials

3 Methods

4 Results
Main Results
Further Inspection

5 Conclusions

Basel Alyafi University of Girona GANs for data augmentation August 8, 2019 2 / 25



Introduction Materials Methods Results Conclusions

Breast Cancer

EU Statistics

WHO1 Statistics in 2018 (both sexes, all ages)
Highest incidence rate.
Third deadliest cancer after colon and lung.

In 2019 [13]
92,000 breast-cancer deaths are expected in women.

Figure: Statistics of most common cancers in the EU in 2018, both sexes and all ages.

1World Health Organization
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Problem Definition
Computer-Aided Detection (CADe) in Breast Cancer

Low Generalisability in CADe

Labelled medical datasets are small due to:
Annotations are time consuming and costly.

Privacy.

Imbalanced data:
Positive (unhealthy) to negative (normal) images.
e.g., a few mammograms have lesions.

Negative pixels outnumber positive ones.
i.e., lesions are relatively small.

Consequences

Performance drops on clinical cases.
Higher False Positive Rate (FPR).

Tissue

Lesion

Figure: Tissue patches outnumber lesion ones
in a mammogram.
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Sampling

Oversampling

Replication.

Features interpolation (SMOTE [7] variations).

Affine transformations.
e.g., flipping, rotation, scaling, translation.

Undersampling

Create smaller balanced subsets.

original vertical horizontal

Figure: Horizontal and vertical flipping applied on a mammographic lesion.

Figure: SMOTE algorithm, the
bright sample is located
on a line that connects
neighbouring samples.
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Generative Models

Pixel RNN [14]

- Explicitly learn data distribution.

- Pixel by pixel→ slow.

RNN to represent long-term dependencies.

Pluses
Neutralise non-pertinent variance sources.

Shape sources: affine transformations.

Content sources,
e.g., driver + car = car.

Figure: pixel RNN, conditional de-
pendencies [5].

[2]
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Generative Models (2)

Generative Adversarial Networks (GANs)

Introduced by Goodfellow et al (2014) . [11]

Minmax problem.
The Generator (forger)

Takes random input.
Synthesises images to fool the detective.

The Discriminator (detective)
Captures real samples.
Gets penalised when it fails.

GANs Advantages

+ Concurrent.

+ Learn data distribution
implicitly.

Figure: GANs as a real-life scenario [4].
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Related Work
GANs in medical imaging 2018

Frid-Adar et al, DCGAN2 to generate 3-class 2D liver images for augmentation
purposes as a function of the training size. [8]

C. Bowles et al, DCGAN to generate segmented MR3 and CT4 brain images +
conventional augmentation of synthetic and real images. [6]

E.Wu et al, conditional infilling to add/remove lesion patches (256 × 256). [18]

D. Korkinof et al, Progressive GAN to generate full mammograms. [12]

H. Salehinejad et al, DCGAN to generate chest pathology patches (256 × 256).
[16]

2Radford et al [15]
3Magnetic Resonance
4Computed Tomography
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Objectives

GANs to generate realistic mammographic patches.

Synthetic images for imbalanced classification augmentation.

Basel Alyafi University of Girona GANs for data augmentation August 8, 2019 9 / 25



Introduction Materials Methods Results Conclusions

Outline

1 Introduction

2 Materials

3 Methods

4 Results
Main Results
Further Inspection

5 Conclusions

Basel Alyafi University of Girona GANs for data augmentation August 8, 2019 9 / 25



Introduction Materials Methods Results Conclusions

Dataset

OPTIMAM Dataset [9]

Over 79,000 images.

4821 patients.

Heterogeneous.
Lesions included

Mass (M).
Calcification (Cal).
Architectural distortion.
Focal asymmetry.

Properties

Detailed explanatory Excel files.

Processed and unprocessed images.

Left and right breasts.

Craniocaudal (CC) and mediolateral (MLO)
views.

Manufacturers: e.g., Hologic, Philips, GE.

Modalities: e.g., BioVision, L30, Selenia.

Figure: Left to right, a mass patch (496 × 519), a calcification patch (409 × 384 p), architectural distortion [1], focal
asymmetry [3].
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Data Preparation
Filtering, GT, Mask, Patch extraction

Preprocessing

Image inclusion criteria
Hologic, Lorad Selenia.
Processed images only.

Histogram normalisation.
Mask generation

non-zero thresholding.

Groundtruth generation
Read lesion coordinates from Excel.
White rectangles over lesions.

Patch extraction (128× 128)
lesion and normal tissue patches.

Outcome

4536 lesion (positive) patches (2215
M, 2321 Cal).

147,000 normal tissues.

1

2

3

10

Tissue

Lesion
Tissue

Rejected
Lesion

Mask {0,255} Groundtruth {0,255}

Patch Extraction

x1x2

y1
y2

normalised image
range [0, 255]

Figure: Data preparation diagram.
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Deep Convolutional GAN (DCGAN)
Architecture

Proposed by Radford et al 2016. [15]
Stable in training.
Modified to 128× 128 output.
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Figure: Generator (top) and Discriminator (bottom) architectures. TConv2d: transpose convolution 2D, BN: 2D batch
normalization, LRelu: Leaky Rectified Linear Unit.
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Deep Convolutional GAN (DCGAN)
Training

Settings

Training set: 4536 M + Cal.

LD = −Ex ∈ Px , z ∈Pz [log(x) + log(1− D(G(z)))]

LG = −Ez ∈ Pz [ log(D(G(z))) ]

Training Steps

1 Generate a noise batch z ∼ N (0, 1).

2 Forward z through G→ G(z).

3 Forward G(z) and real x through D.

4 Calculate LD .

5 Update D.

6 Calculate LG.

7 Update G.

G
z~Pz

Fake G(z) Real x

DP~[0,1]

Latent
Space

128
128

128

LD

LG

1

2

3

4

5

6

7

128

Figure: DCGAN training process.
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Deep Convolutional GAN (DCGAN)
Training Techniques and Evaluation

Training Techniques

One sided label smoothing.

Conventional augmentation (flipping) on the input.

D kernels are larger than G’s.

Long training (1000 epochs).

Frechet Inception Distance (FID)

FID was used to guide the training (model saving). [10]

Evaluate images in Inception-v3 feature space.

The lower the distance the more similar the fake and real images.
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Imbalanced Classification
Diagram
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Figure: Imbalanced classification diagram. k ∈ {100, 250, 500, 750, 1000, 1300}.
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Imbalanced Classification
Settings

Training Dataset

Mass (Positive):
{Pk , k ∈ {100, 250, 500, 750, 1000, 1300} }
Normal Tissue (Negative):
{Nk , k ∈ {1000, 2500, 5000, 7500, 10e3, 13e3} }
Imbalance Ratio (IR) = 10.

Augmentation Ratio (AR) = 1.5.

3 fold CV (60% train, 6.6% validation, 33% test).

Training Modes

ORG: real unbalanced (1:10).

Aug ORG: horizontal then vertical flipping ORG.

GAN: ORG + fake masses.

Aug GAN: horizontal then vertical flipping GAN.

P100 P250 P500 P750 P1000 P1300

Figure: Subsets overlapping.

Evaluation

F1 = 2 Precision×Recall
Precision+Recall .

AUC.
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Main Results

Lesion Simulation

RealFake

Figure: Fake and real images with mass and calcification. DCGAN trained on 4.5K patches.
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Main Results

FID Plot

Figure: FID plot for DCGAN trained on 4.5K patches. The orange line is the moving average of the blue one.
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Main Results

Classification Results

Figure: F1 score for all training modes.
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Main Results

AUC Results

Table: Area Under the ROC Curve (AUC) for different modes and training sizes (k).

Mode Training Size
100 250 500 750 1000 1300

ORG 0.9836 0.9848 0.9896 0.999 0.9989 0.9989
GAN 0.9843 0.9902 0.9984 0.9997 0.9993 0.9987

Aug ORG 0.9877 0.9896 0.9982 0.9998 0.9997 0.9999
Aug GAN 0.9902 0.9984 0.9996 0.9990 0.9998 0.9999
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Main Results

t-SNE Analysis

t-SNE: t-distribution Stochastic Neighbor Embedding. [17]
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Figure: t-SNE analysis for real and fake masses and real normal tissue patches.
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Further Inspection

Experts Assessment

Settings

Sample size
75 real and 75 synthetic
(128× 128) patches.

Two doctors were included.

Observers Accuracies

48% for observer V.

60.7% for observer J.
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Conclusions

GANs support inliers.

GANs are sensitive to hyperparameters but powerful.

Fake synthesisation and traditional augmentation are independent.

GANs fill in (interpolate) gaps.

GAN + flipping outperforms GAN alone.

GAN images are similar to real ones.
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Limitations and Future Work

128× 128 patches→ larger patches or full mammograms.

150 samples assessed by 2 doctors→ larger sample and more specialists.
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Thanks
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