
GAN (GENERATIVE ADVERSARIAL NETWORKS) 
FOR REALISTIC DATA AUGMENTATION AND LESION 

SIMULATION IN X-RAY BREAST IMAGING

Figure 1: Dataset preparation.
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Medical datasets are usually costly to label. This reduces the 
availability of large annotated medical datasets. As a result,  
supervised machine learning tools, when used in medical 
applications, commonly suffer from problems related to lack 
of generalisation. GANs [1] were introduced in 2014 and 
have been used in many different applications ranging from 
image synthesisation, to image translation, and in super 
resolution problems. In this work, we use Deep 
Convolutional GAN (DCGAN) [2] to generate synthetic 
mammographic lesion patches of size 128 x 128 pixels in 
order to use them to:

In GANs, two networks should be trained simultaneously, 
namely: Generator (G) and Discriminator (D). D learns to 
capture real images among fake ones, while G tries to fool D.

Figure 2: The top view of training DCGAN. Dotted arrows 
refer to fake values.
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Figure 5: Synthetic and real 
lesions
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Figure 3: Augmentation as a function of training size.

Figure 4: F1 score for all modes.

Figure 6: t-Stochastic Neighbor Embedding (t-SNE) 
distribution of real and fake lesions, and normal tissue.
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OPTIMAM [3] dataset has 79K 
processed and unprocessed images.

  Read Image I.

  Create groundtruth 
  GT from lesion coordinates.

  Apply histogram 
  normalisation to get I'.

  Create corresponding 
  Mask using non-zero 
  thresholding. 

  Using I', GT, and Mask, 
  extract patches.

Outcome: 
5K lesion patches and 147K
normal tissue patches.
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GAN: ORG + fake. 

Aug GAN: flipping(ORG + fake).

ORG: real unbalanced (1:10). 

Aug ORG: flipping(ORG).

G generates mass and/or calcification.

High realism and diversity.

Best Frechet Inception Distance of 16.
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GANs are sensitive to hyperparameters but powerful.

Fake synthesisation and traditional augmentation are independent.

GANs support 
inliers.

GANs fill in 
(interpolate) gaps.

GAN + flipping 
outperforms GAN 
alone.

Augment an imbalanced dataset to improve classification 
performance.

Provide specialists with photo-realistic mammographic lesions.


