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Abstract

Early detection of breast cancer has a major contribution to curability, and this importance increases when using non-
invasive solutions as mammographic images. Supervised deep learning methods have played a great role in object
detection in computer vision, but it suffers from a limiting property; the need to huge labelled data. This becomes
stricter when it comes to medical datasets which have high-cost time-consuming annotations. As a leveraging method,
Deep Convolutional Generative Adversarial Networks (DCGANs) are proposed here to ameliorate this problem, they
are trained on different-size partial subsets of one dataset and used to generate diverse and realistic mammographic
lesions. The effect of adding these images is tested in an environment where a 1-to-10 imbalanced dataset of lesions
and normal tissue is classified by a fully-convolutional neural network. We show that using the synthetic images in
this environment outperforms the traditional augmentation method of flipping. A maximum of ∼ 0.09 and ∼ 0.013
improvement of F1 score and AUC, respectively, were reported by using GANs along with flipping augmentation
compared to using the original images even with relatively-small dataset sizes. We show that DCGANs can be used
for synthesizing photo-realistic mammographic mass patches with a considerable diversity measured using Frechet
Inception Distance (FID).

Keywords: computer-aided detection, generative adversarial networks, data augmentation, breast cancer, deep
learning, fully-convolutional neural networks, t-Stochastic Neighbor Embedding.

1. Introduction

1.1. Breast Cancer Detection
Cancerous breast cells have been the second deadli-

est disease in women globally coming after lung cancer.
This disease was the most frequently diagnosed cancer
in 154 countries and the first cause of cancer death in
women in 100 countries in 2018 (Bray et al., 2018). In
EU, breast cancer was the first cause of cancer death in
2014 for women, while for men it was lung cancer. Ap-
proximately, over 92000 women are anticipated to die
because of breast cancer in 2019 with a similar number
of deaths in 2014 (Malvezzi et al., 2019). Computer-
aided detection (CADe) systems have shown that they
can assist specialists in decision making although recent
studies show that patient recalls have increased when
using artificial intelligence as a second reader (Le et al.,
2019). Moreover, CADe systems have been a good al-
ternative for double reading to reduce failures resulted

from mainly: visual search mistakes due to fatigue or
other reasons, and mistakes in interpretation due to lack
of decision-making experience for inexperienced inter-
preters (Bazzocchi et al., 2007). These systems can help
reduce the diagnostic accuracy differences between ra-
diologists caused by intra- and inter-observer variability
(Elmore et al., 1994). Particularly, these systems can in-
crease the sensitivity of less-experienced interpreters by
increasing the detection rate by 10% (as a maximum)
and reducing the time needed to detect the disease by
one month in the best case. That said, the benefits
observed in more-experienced readers is much smaller
(Kohli and Jha, 2018). Additionally, CADe systems,
represented currently by neural networks, require large
amounts of annotated data when using supervised learn-
ing. Unsupervised learning is still under research where
there is no need for completely-labelled datasets. How-
ever, a large number of experiments is usually needed
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to teach the system making deep learning in general a
limited-capability tool if the need to a large enough data
is not met properly. Furthermore, publicly-available
medical datasets are usually small and imbalanced due
to concerns mainly related to privacy and the high costs
needed to produce professional annotations by experts.
To alleviate this problem of lack of data, different meth-
ods ranging from conventional data augmentation us-
ing affine transformations such as flipping or scaling,
passing by sampling methods, to the more effective but
complex way using Generative Adversarial Networks
(GANs) (J. Goodfellow et al., 2014).

1.2. Generative Adversarial Networks

To use machine learning tools in CADe systems, a
reasonable amount of medical data is needed to train
the system on capturing abnormalities in input images
that specialists try to detect. These abnormalities dif-
fer from one medical field to another, breast lesions
and lung nodules, for instance. Public medical datasets
usually suffer from unbalanced distribution of images
between the classes under study. Target class images
are commonly rare, for example in INbreast dataset, by
Moreira et al. (2012), one fourth of the dataset contains
breast lesions. Intrinsically, in a mammographic image,
normal tissue patches largely outnumber lesion patches
(the target concept), if there is any, when classifying
with/without lesion images patch wise. When this kind
of problem exists, the learning process becomes more
difficult and sometimes might lead to a loss in generali-
sation (overfitting). To overcome this obstacle, scholars
usually use different methods: oversampling the weak
class (e.g. SMOTE and ADASYN), undersampling the
strong class, or ensembling the weak class with subsets
of the strong class to make multiple smaller balanced
datasets (for instance Easy Ensemble, BestCascade and
NearMiss) (He and Garcia, 2009). Most oversampling
methods, if not all, in general, use either samples repli-
cation, interpolation, or extrapolation. By replication,
the algorithm tries to push the population up by replicat-
ing some samples identically. Interpolation-based meth-
ods insert new samples that are derived from the neigh-
bourhood by averaging the features, i.e., averaging two
neighbouring samples belonging to the same class to
find the midpoint sample. Finally, extrapolation meth-
ods, as image rotation, translation, and zooming, pro-
duce new samples that can increase the generalisation
of the model by reducing (or removing) the contribu-
tion of some sorts of non-pertinent variance–differences
that are unrelated to the discrimination process–in prop-
erties like image angle, center position, and size to de-
cision making (Bowles et al., 2018). However, not all
non-pertinent information is as easy to exclude from
discriminative features as affine transformations, espe-
cially in medical imaging field where there is a lack of
conventional augmentation tools to tackle all sources of

non-pertinent variance. GANs, introduced in J. Good-
fellow et al. (2014), made a revolution in the field of
data synthesisation, where a network (called generator
or G) learns the distribution of the input data implic-
itly by the aid of another network (called discriminator
or D) which, in turns, tries to learn to distinguish real
among fake (synthetically-generated) images and feed
the result back to G to update the weights. In other
words, G learns the mapping Z → X, where Z is the
latent space (noise) and X is the data distribution, while
D learns the mapping X → [0, 1]. These two networks
learn simultaneously in order to get in the end a gener-
ator that can yield realistic and diverse images starting
from a random input (latent vector). In theory, when
the generator and discriminator become experts, G gen-
erates images that are classified as well as real images
with a probability of 0.5, which is known as Nash equi-
librium. To reach near this point, the learning process
should converge in such a way that neither G nor D
learns in a pace that is much higher than the other. Fur-
thermore, GANs have the big advantage of being able
to augment a wide range of variance sources providing
that the dataset has enough examples. As an example,
consider a breast mass detection problem where micro
calcifications should not affect the decision, by apply-
ing traditional methods of augmentation it is hardly ever
possible to add calcification to a mass-only lesion which
can be done using a trained generator. Two main prob-
lems might come up when training GANs (Goodfellow,
2016):

• Mode collapse: this happens when the network
generates images that are replications of one pat-
tern with slight differences. In this case, G has
a many-to-one mapping between the latent space
and the output images. As a consequence, the
diversity of the outputs will be low (low recall)
while realism might be fine. In multi-class prob-
lems, two kinds of mode collapse (or equivalently
mode dropping) might exist: intra-class and inter-
class, where in the former kind, the generator syn-
thesises images for which the per-class diversity is
low, while, in the latter kind, G synthesises images
from one (or a few) class(es) only, ignoring others.

• Oscillation: when the generator keeps generating
different samples but with low realism (low pre-
cision) which are easy for D to reject. Meaning
that the system never converges, this is commonly
caused by imperfect tuning for the learning speed
of G and D, where D learns quickly giving no time
for G to improve. This results in G loss increasing
early in the training process while D loss reaches
low values.

In this paper, Deep Convolutional GAN (DCGAN) was
selected due to training stability as presented in Rad-
ford et al. (2016). It was used to synthesise mammo-
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graphic lesions to use them as data augmentation to sup-
port CADe for breast mass detection. The rest of this pa-
per is organised as follows: section 2 describes in brief
recent works on GANs in medical imaging. Materials
are explained in section 3, while methods are presented
in section 4. Sections 5, 6, and 7 include the results,
discussion and conclusions, respectively. The contribu-
tions of this work are as follows:

1. We show that DCGANs are able to generate im-
ages of 128 × 128 pixels of realistic and di-
verse mammographic mass and calcification le-
sions evaluated quantitatively using Frechet Incep-
tion Distance.

2. We tested the DCGANs performance after being
trained and we show that it provides remarkable
improvements when used to augment an imbal-
anced dataset.

3. We analysed the effect of adding the synthesized
images to an imbalanced dataset as a function of
training set size in a classification problem.

4. We propose one framework (Figure 7) under which
all previous points can be tested combined using 3-
fold cross validation.

5. We show that the generated images belong to
the real images’ distribution by visualizing the t-
Stochastic Neighbor Embedding (t-SNE) of both
real and fake images.

6. We made the trained generators publicly available,
along with the code, to the scientific community to
generate patches of breast masses.

2. State of the art

Korkinof et al. (2018) used Progressive GANs to gen-
erate 1280 × 1024 full mammogram images that show
breast anatomy with acceptable amount of fine details
using the multi-stage adversarial learning introduced in
(Karras et al., 2018). In Salehinejad et al. (2018), 5-
class chest pathology X-ray 256×256 images were gen-
erated using the well-known DCGAN architecture by
Radford et al. (2016). They evaluated the effect of in-
cluding the synthesized images by measuring the bal-
anced test accuracy using three models, namely: real
imbalanced dataset (DS1), real balanced dataset (DS2)
with 2K images from each class, and balanced real +

synthesized images (DS3) with approximately 30K im-
ages from each class. The results clearly showed that
including synthetic images boosted the performance of
the model significantly with average accuracies DS1:
70.87, DS2: 58.90, DS3: 92.1. Conditional infilling for
mammogram lesions was presented in Wu et al. (2018),
where the authors filled a masked region in a patch with
a multi-stage training approach (similar to resolution
pyramids). They proved that starting with small gen-
erated images then enlarging them gradually gave high

resolution images that were useful to augment the un-
balanced dataset and get a higher AUC value. They used
different kinds of loss, where to assure realism they used
feature loss which is the average of squared differences
between the pretrained-VGG-19 feature maps from real
and fake images, but they used boundary loss to get
smooth edges between the generated lesion and the in-
filled component by minimising the difference at the
boundary of the lesion. To evaluate the outcome of the
generator objectively, ResNet 50 was used as a classi-
fier to show performance improvement, ciGANs model
combined with traditional augmentation was reported to
have a +0.014 AUC more than the baseline model (with-
out augmentation) and +0.009 than traditional augmen-
tation. Frid-Adar et al. (2018) used GANs to generate
2D liver lesions by training a DCGAN on 182 images
belonging to three classes with conventional augmen-
tation applied on the input. Thereafter, they generated
images by the trained generator and used these images
as augmentation over the conventional methods of rota-
tion, scaling, and translation. They showed that GANs
improved sensitivity and specificity by 7% and 4%, re-
spectively, with respect to using traditional augmenta-
tion methods only. Additionally, they showed that us-
ing t-distributed Stochastic Neighbour Embedding (t-
SNE) tool, GANs can provide more diverse features
than traditional augmentation. However, they did not
investigate the effect of changing the size of training
set on GANs images quality, and consequently, on the
DCGAN-augmented classification problem. They pre-
sented that two observers were able to achieve approx-
imately 62% and 58% accuracy in differentiating real
from fake images, but they did not show any Frechet In-
ception Distance (FID) or Inception score (IS) to evalu-
ate the realism and diversity of their synthesized images
objectively. They found out that adding more synthetic
images beyond some limit did not improve the classifi-
cation performance any more and they analysed on a
small scale the effect of adding a few more real im-
ages. Bowles et al. (2018) used DCGANs to generate
synthetic segmented Computed Tomography (CT) and
Magnetic Resonance (MR) brain images to enhance the
performance of segmentation networks. They included
an interesting experiment where they studied the effect
of applying conventional augmentation (rotation, flip-
ping, scaling) on DCGAN-generated images and they
found out that the traditionally-augmented GANs im-
ages could improve the performance more than the sum
of GAN and augmentation improvements when trained
separately. Another important point they highlighted
was that GANs do not impose any negative impact on
the classification performance when trained on limited
datasets, on the contrary, when the GAN was trained
on a relatively large dataset, it introduced a decay in
the overall segmentation performance. Douzas and Ba-
cao (2018) exhaustively compared conditional GANs
(cGANs) by Mirza and Osindero (2014) with SMOTE
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Table 1: Dataset Annotations given in Excel files.
Image Information Patient ID

Study ID
Series ID
Image ID

Lesion Information Lesion ID
x1, y1
x2, y2
Lesion status
Lesion type

by Chawla et al. (2002) and its variations of oversam-
pling methods using 71 datasets with different sizes and
imbalance ratios. They used 5 different classifiers; Sup-
port Vector Machines, Decision Trees, Logistic Regres-
sion, Gradient Boosting machines, K-Nearest Neigh-
bours; and three metrics: F score, G mean, and Area Un-
der the ROC Curve (AUC). In conclusion, they reported
that cGANs statistically outperformed other methods
and had the highest mean rank (closer to one) using all
datasets , classifiers, and metrics. However, they did not
include any deep learning method as a classifier and no
qualitative evaluation was mentioned.

3. Materials

The dataset used in this work was OPTIMAM
Halling-Brown et al. (2014) which has around 80,000
processed and unprocessed images extracted from the
National Breast Screening System (NBSS). This dataset
has expert annotations linked to images via exhaustive
Excel files that have all the information required to iden-
tify the image and any clinical observation. Table 1
shows some column headers of the Excel files. Image
information fields link the image to a patient, a study
(where some patients have more than one study), and
a series. Lesion coordinates (x1, y1, x2, y2) are given
in pixels, lesion status can be one of: Breast Imaging
Reporting and Data Systems (BIRADS) levels: B1, B2,
B3, B4, or B5, where B1 categorizes the finding as neg-
ative while B5 is for highly suspicious of malignancy
(Orel et al., 1999). Lesion type can be one of: mass, cal-
cification, focal asymmetry, architectural distortion or a
combination of them. Table 2 shows more columns that
were used later on to filter the dataset. Images included
in this dataset were acquired using modalities made by
different manufacturers: Philips, General Electric, Ho-
logic, Faxitron X-ray Corporation, Lorad, Siemens, or
Bioptics Inc. Model name is the model of the device
used for acquisition (examples are Selenia, Bio Vision,
and L30 Philips). X-ray tube current is the estimated
value of the current used to acquire the image (ranges
from 1 to 1500 mA) with a specific magnification fac-
tor (ranges from 1 to 2.15). Additionally, presentation
states whether the image was processed from origin or

not. In summary, the dataset was heterogeneous com-
bining images from different manufacturers and modal-
ities which resulted in a wide spectrum of distributions.
As it is known in classification problems using deep
learning tools, training images should come from sim-
ilar distributions so the network can learn the general
pattern. Figure 1 shows four different images from the
dataset. Images from the left column have the same
properties (modality, manufacturer, settings) but still (c)
has some measurements that cannot be included in train-
ing the GAN, resulting in filtering these properties due
to the difficulty in distinguishing between cases like (a)
and (c). Case (d) has a distribution that is not aligned
with other images where the background is white and
dense tissues are represented by dark intensities. Case
(b) is a sample from the set of properties selected where
the contrast is relatively better than other cases.

(a)

(d)(c)

(b)

Figure 1: Some different samples that show the importance of filtering
the dataset. (a) is a CC-view of a mammogram by GE Medical Sys-
tems with current 62 mA and magnification factor 1.0 , (b) an MLO
view by Hologic Selenia, current 100 mA and magnification factor
1.0, (c) an MLO by GE Medical Systems Senographe Essential with
current 62 mA and magnification factor 1.0 (notice the magnification
view), (d) an MLO by Philips Digital Mammography Sweden L30
with current 180.0 mA and magnification factor 1.0304.

3.1. Image Selection Criteria

In order to properly train a neural network, the in-
put images should have similar distributions. To satisfy
this requirement, a filtering technique was applied on
the dataset using the annotation files. Exhaustive ex-
periments were conducted to show images belonging to
different sets of configurations. It turned out that images
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Table 2: Acquisition settings criteria.
Criterion Value

Manufacturer Hologic, Inc.
model name Lorad Selenia

X-ray tube current 100
Magnification Factor 1.0

For presentation True

with the characteristics shown in Table 2 had similar in-
tensity distributions, so they were selected for extracting
patches. The idea is first to select one manufacturer and
one model which are Hologic and Lorad Selenia from
where more than half the dataset came. By doing this,
all selected images have experienced the same process-
ing. Second, to avoid images with special magnified
projections (see Figure 1 (c)), the current was fixed to
100 mA and magnification factor to 1. Lastly, only the
processed images were used. After this filtering, 14,549
lesion-free images in addition to 5267 with-lesion mam-
mograms were selected including Craniocaudal (CC)
and mediolateral Oblique (MLO) views from right and
left breasts. This data belonged to 3701 patients (some
patients had more than one study and sometimes more
than one lesion per image).

3.2. Breast Mask Generation

OPTIMAM mammographic images come with no
breast masks, however, there was a need to extract
patches background free. To meet this need, a simple
thresholding algorithm (I > 0; I is a grayscale image)
was applied on the filtered dataset. In other words, if
a pixel has a non-zero intensity, it will be considered
part of the breast, see lines 1-4 in Algorithm 1. As an
example of the mask, see Figure 2. All mask images
were saved with meaningful names by adding the ex-
tension msk to the original image name. In order to
make the process of finding the corresponding pair (im-
age,mask) straightforward, the original folder architec-
ture (batch→ patient → study) was preserved.

3.3. Lesion Groundtruth Localization

To generate lesion patches, a groundtruth image was
needed as a reference. To generate these images, a sim-
ple process was followed (see Figure 2). First, the le-
sion coordinates (x1, y1, x2, y2) are extracted from
the the Excel file. Second, an empty image with the
same size of the mammogram image is created then
the area between (x1,y1) and (x2,y2), including end-
points, is filled with the value 255 (not 1 for visualiza-
tion issues). Third and last, the groundtruth image with
the corresponding image name adding the extension gt
to the end and keeping the original folder architecture
(batch → patient → study) is saved, see lines 5-9 in
Algorithm 1.

Image ID
1.2.840.113...

1
2

3

10

Tissue

Lesion

Tissue

Rejected
Lesion

Mask {0,255} Groundtruth {0,255}

Query Lesion
 Coordinates

Threshold

Patch Extraction

x1x2

y1
y2

range:[0,255]

Original Image

Histogram
Normalization 
 

Figure 2: Data preparation overview. From top to bottom and left
to right: original image, query lesion coordinates represents the pro-
cess of reading the lesion top-right and bottom-left coordinates from
the database, histogram normalization represents the process of trans-
forming the intensity distribution to the range [0, 255], non-zero
thresholding, lesion groundtruth, breast mask, overlayed images (yel-
low overlay: breast mask, cyan overlay: lesion groundtruth, grayscale:
histogram-normalized image), tissue patches (green rectangles) and
lesion patch (yellow rectangle). The red rectangles represent rejected
patches, where normal tissue conditions are violated (the top red rect-
angle has some background, the middle one is located partially inside
the lesion, while, the lowest one has complete background pixels).
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3.4. Image Preprocessing and Patch Extraction
Image preprocessing and patch extraction steps are

summarized in Figure 2. Using the filtering criteria
mentioned in section 3.1, images which do not meet the
inclusion criteria were not included. After filtering, we
read one image (top block in the figure) and create the
corresponding mask image (see section 3.2). If this im-
age contains a lesion, the lesion groundtruth image is
created as described in section 3.3, otherwise an empty
groundtruth image is created (see the left branch in the
figure). Histogram normalization was applied on all fil-
tered images to assure similar intensities range [0, 255]
and data type (unsigned integer on 8 bits). All three
outputs (normalized image + mask + groundtruth) were
used to extract the patches as depicted in Figure 2 bot-
tom part where only three green rectangles are shown
for the sake of a simple figure. In practice, ten ran-
dom normal-tissue patches of 128 × 128 pixels were
extracted, in addition to full-lesion patch(es) if any le-
sion exists. In Algorithm 1, the first three lines read
an image from the filtered dataset after applying his-
togram stretching. Then, the corresponding mask and
groundtruth (see sections 3.2 and 3.3) are created and
the lesion patch is saved with dimensions that might be
different from one lesion to another. Starting from line
12 in the algorithm, patch extraction process includes
extracting 100 random patches and verifying if they be-
long to breast region with white mask (see the first part
of the condition at line 15). Normal tissue patches are
lesion free as indicated in the second term of line 15 in
the algorithm. The algorithm keeps extracting patches
until it reaches 10 valid patches or 5 iterations before
stopping. In this case, for every image, a maximum
of 10 normal tissue (referred to as ’Tis’) patches and a
number of lesion patches (’Les’), which is related to the
number of lesions contained in the image, are extracted.

3.5. Patches Post-Processing
In addition to the previously-described preprocess-

ing steps, some of ’Tis’ patches had a very narrow his-
togram. Those patches did not carry enough intensity
variations to resemble normal tissue patches. A sim-
ple post processing algorithm was applied in which the
number of unique intensity values for each patch was
calculated. Patches with less than 30 different intensity
values were removed from the patch dataset. After all,
5351 lesion (classes include mass, calcification, focal
asymmetry, and architectural distortion) and 147,951
normal tissue patches, extracted from all filtered mam-
mograms regardless having a lesion or not, were saved
for training the GAN and the classifier.

4. Methods

4.1. The Generator
As mentioned before in the introduction, DCGAN by

Radford et al. (2016) was used with some modifications

in this work. The architecture of G is shown in Fig-
ure 3. The aim of the generator is to learn the map-
ping between the latent space (the normal distribution
in this case) and the space of mammographic lesions
in a sense that it can transform a vector from the la-
tent space to a lesion image that can fool the discrim-
inator. Figure 3 shows that the generator (with green
color referring to G in this work) had six layers (it was
5 in the original paper ending with 64× 64 output). The
first layer projects the latent vector and reshapes it to the
first cube shown. Internally, it is a dense layer followed
by reshape. Tconv2d refers to Transpose Convolution
2D with kernel size 4, stride 2 and one pixel padding.
In this implementation, no max pools nor dense layers
were used as suggested in Radford et al. (2016). The
activation function used was LeakyRelu with negative
slope 0.2 and batch normalization on all layers except
the last one where the activation function was hyper-
bolic tangent (Tanh).

4.2. The Discriminator

The discriminator task is to distinguish between real
and fake lesion images outputting realism probability (0
means definitely fake, 1 means definitely real). Figure 4
shows the architecture of the discriminator where it ac-
cepts an image, it resizes it to 128×128, and normalizes
its intensity to the range [-1, 1]. The six layers (five in
the original paper) are similar to the generator’s ones but
the opposite direction. Convolution2d layers were acti-
vated by LeakyRelu with negative slope 0.2. 2D batch
normalization was used in all layers except the first and
last ones. Stride 2 was used to downscale the size until
layer 6 where stride was 1. The kernel size 6 × 6 was
used for all layers with padding two (except for last one
4×4 and 0 padding). The activation function for the last
layer was sigmoid to output a probability between 0 and
1.

4.3. DCGAN Training

As mentioned in Lucic et al. (2018), GANs losses do
not matter as hyperparameter tuning and the availabil-
ity of computational resources. The loss functions used
to train this DCGAN were the ones recommended in J.
Goodfellow et al. (2014), see equation (1) for discrim-
inator loss (J(D)) and (2) for generator one (J(G)). To
give a brief explanation of these loss functions, the dis-
criminator loss is aiming to provide values as close to 1
as possible for real inputs (maximize log(D(x))), while,
giving as close to 0 as possible for fake inputs (max-
imize log(1 − D(G(z)))). For G loss, this is the mod-
ified version proposed in J. Goodfellow et al. (2014),
where the generator tries to fool the discriminator to get
as close to 1 as possible by generating images that D
gives high realism probabilities, this loss is referred to
as Non-Saturating loss (NS loss). The convergence oc-
curs when the discriminator cannot actually distinguish
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Algorithm 1 Patch Extraction
1: read one image from the filtered preprocessed dataset, I
2: H,W = size(I)
3: mask = zeros(H,W)
4: mask[I > 0] = 255
5: GT = zeros(H,W)
6: if hasLesion then
7: fetch lesion coordinates (x1, y1, x2, y2)
8: GT [y1 : y2, x1 : x2] = 255
9: Save I[y1:y2, x1:x2]

10: end if
11: Count = 0
12: while Count < 10 and max iter < 5 do
13: extract 100 random patches (p0, p1, . . . , p99)

p = extract patches2d(I, num = 100, size = (128, 128))

14: for all pi do
15: if

∑
mask[pi ∩ mask] == 255 × 1282 and

∑
GT [GT ∩ pi] == 0 then

16: Save p
17: Count + +

18: end if
19: end for
20: max iter + +

21: end while

200

128

128

input z

Project 
+reshape

TConv2d
BN+LRelu

TConv2d
Tanh

4

4

450

8

8

360

16

16

180

32

32

90

64

64

45

output G(z)

TConv2d
BN+LRelu

TConv2d
BN+LRelu

TConv2d
BN+LRelu

Figure 3: Generator architecture, the input belongs to the normal distribution with 0 mean and 1 standard deviation, TConv2d represents a transpose
convolution 2D (kernel size 4, padding 1, stride 2 except for the first one where stride=1, padding=0), BN stands for 2D batch normalization, LRelu
means leakyRelu with a 0.2 negative slope.

Conv2d
LRelu

Conv2d
BN+LRelu

output D(x) 
Realism 
Probability

64

64

45

32 16 8 4

32
16

8 4

90
180

360
450

p~[0,1]

128

128

input x

1
1

Conv2d
BN+LRelu

Conv2d
BN+LRelu

Conv2d
BN+LRelu

Conv2d
Sigmoid

Figure 4: Discriminator architecture, Conv2d represents a convolution 2D layer (kernel= 6, stride= 2, padding= 2, except for the last one where
kernel=4, stride=1, padding= 0), BN stands for 2D batch normalization, LRelu means leakyRelu with a 0.2 negative slope.
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real among fake cases where the ideal case is to have 0.5
on the output of D for both real and fake inputs (Nash
equilibrium), meaning that the distributions (Px, Pgen)
are completely matched and there is no possibility to
find the boundary for the classifier.

J(D) = −Ex ∈ Px, z ∈Pz [log(D(x)) + log(1 − D(G(z)))]
(1)

J(G) = −Ez ∈ Pz [ log(D(G(z))) ] (2)

In Equations (1,2), E refers to averaging over training
examples, Px, Pz refers to training images and noise dis-
tributions, respectively, z is the random vector input to
G, and G(z) is the synthetic output of G. As mentioned
in J. Goodfellow et al. (2014), this G loss is preferred
to log(1 − D(G(z))) because it has higher gradients at
the beginning of the training process which makes G
learn faster, see Figure 5. The optimizer used to train
both G and D was Adam by Kingma and Ba (2014) with
β1 = 0, β2 = 0.99 and learning rates 4e−4, 2e−4 for G
and D respectively. Learning rates were exponentially
decreased by a factor of 0.99 every 10 epochs for G, and
8 epochs for D. The batch size was 64 and the model
was trained for 1000 epochs. Figure 6 shows the train-
ing procedure step by step, where the dense arrows refer
to real-image related processes, while the dashed ones
refer to synthesized-image related processes. Every
training iteration, a batch of random latent vectors are
generated from the normal distribution with zero mean
and unit standard deviation (z ∈ Pz; Pz = N(0, 1)), see
step 1 in the figure. This pure-noise batch is to be first
normalized to the range [−1, 1] then forwarded through
G to generate a batch of fake images (G(z)), see step two
in the figure. These fake images are first normalized to
the range [0, 1] then forwarded through D to get real-
ism probabilities, see step three with dashed arrows. An
equal-size batch of real images is normalized and for-
warded through D to learn the boundary between real
and fake lesion spaces, see step three dense arrow. In
step four, equation (1) is used to calculate the loss for
the discriminator, then backpropagation is done to up-
date D parameters, see step five. Equation (2) is used to
calculate G loss in step six. Then, backpropagation is
done to update G parameters, see step seven. To com-
plete one epoch, this process, from step 1 until seven, is
repeated until all the real images are covered.

4.3.1. Training Techniques used
Training GANs is a precise process that should be

driven carefully to avoid divergence problems (see sec-
tion 1). In this work, different work-arounds have been
used to overcome common problems, such as getting
similar lesions all having the same shape with slight dif-
ferences or even getting unrealistic lesions (see the early
stages in Figure 14 in annex 9.2). As mentioned in Sali-
mans et al. (2016), one-sided label smoothing was a use-
ful technique in which over-confidence problems were

Figure 5: Generator loss comparison between original minmax loss
(orange dashes) and the non-saturating loss function (the blue solid)
in (J. Goodfellow et al., 2014). D(G(z)) represents the discriminator
output for the generated images and E represents averaging over the
number of generated images.

resolved. Every epoch, a value in the range [0.7, 1] is
picked to be the real label for training D and G which
helped to force the discriminator to keep learning so the
gradients never diminish which, as a result, pushes G
to keep enhancing the output results. This does not af-
fect the accuracy (the real label is still higher than 0.5).
Conventional data augmentation, horizontal and vertical
flipping, was used in which the original dataset size does
not change as the flipping happens on the fly. This helps
increase the diversity of the generated images. One of
the critical issues that were faced during training was
the checkerboard effect in which a rough grid shows up
in the synthesized images, which obviously reduces the
realism. The explanation of the problem was that this
artifact was in the blind spot of D (because D and G
kernels were completely aligned before changing) so it
did not contribute enough to the loss function. The so-
lution was inspired by a talk of Goodfellow (2016) 1

where it was suggested to use different kernel sizes be-
tween G and D, so a larger kernel (6×6 instead of 4×4)
was used for D which made that artifact more visible
to D and it could penalize G for it. The results were
significantly improved with a noticeable increase in di-
versity and realism as well. Other techniques, namely:
spectral normalization as in Miyato et al. (2018), layer
normalization as in Lei Ba et al. (2016), pixel shuffle to
resolve checkerboard effect as in Shi et al. (2016), and
label flipping were used but no significant effect on the
results was observed.

1The video is available at: https://channel9.msdn.com

https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Generative-Adversarial-Networks
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Figure 6: The top view of training DCGAN, the input belongs to the
normal distribution Pz with mean 0 and standard deviation 1. Dotted
arrows refer to fake-input related values. Steps from one to seven are:
generate a noise batch, forward through G to generate a fake batch,
forward the real and fake batches through D, calculate LD, update D,
calculate LG , and update G, in order.

4.4. DCGAN Evaluation

To evaluate the generated images by the DCGAN,
different tools were utilized as follows.

4.4.1. Training Phase
Frechet Inception Distance (FID), proposed by

Heusel et al. (2017), was calculated to reflect the per-
formance of the generator during the process of training
the DCGAN. The equation for calculating FID is:

FID(R,G) = ||µR − µG ||
2
2 + Tr(ΣR + ΣG − 2

√
ΣRΣG)

(3)

where R, and S are the real and synthesized images
folders, respectively. µR is the mean of feature maps
of Inception-v3 by Szegedy et al. (2016) for the real
folder, µS is the mean of Inception-v3 feature vectors
for the synthetic folder. ΣR is the covariance matrix of
Inception-v3 output feature vectors for the real folder,
ΣS is the covariance matrix of Inception-v3 output fea-
ture vectors for the synthetic folder. Tr is the trace pro-
cess of adding the elements of the main diagonal.

The idea is to use Inception-v3 pretrained on Ima-
geNet as a feature descriptor for real and fake images
(using 2048 activation units), then to calculate the differ-
ence between the means of the two folders as well as the
the second term in equation(3) 2. Within GANs users,
Inception score by Salimans et al. (2016) is one of the
frequently used evaluation metrics, however, this met-
ric has to be computed over large enough generated/real
images (50K as mentioned in the paper) which is ten
times larger than the number of positive examples in
this work. Additionally, Heusel et al. (2017) showed

2Implementation in Pytorch was adapted from https://github.

com/mseitzer/pytorch-fid

that FID is more robust against noise and more con-
sistent than Inception score, in other words, the more
similar the generated images to real ones, the lower the
FID. Other works proved mathematically that Inception
Score worked well on ImageNet but it is not guaran-
teed to be working as well on other, especially smaller,
datasets (Barratt and Sharma, 2018). Additionally, IS
captures precision and inter-class diversity while it fails
to capture intra-class diversity which are all captured by
FID (Lucic et al., 2018). Due to all preceding, FID was
preferred as a guideline during training and sometimes
as a model-saving criterion, see Figure 8 for an exam-
ple of FID progress during DCGAN training. Regard-
ing overfitting, neither FID nor IS can capture because
they are intrinsically optimal when the generated im-
ages match the training ones.

4.4.2. Testing Phase
In order to evaluate the trained generator, an augmen-

tation environment is used where an imbalanced dataset
of lesions (positive minority class) and normal tissue
(negative majority class) is to be classified by a fully-
convolutional neural network. In this setting, the clas-
sifier has almost the same architecture as the DCGAN
discriminator with slight differences (less filters due to
a smaller dataset) using {9, 18, 36, 72, 90} as number of
channels, from first to last layer respectively (see Fig-
ure 4). Additionally, 5% weight decay was used as a
regularizer. Furthermore, the distribution of the gener-
ated images was compared to the real ones’ in the two-
dimensional space of t-SNE (van der Maaten and Hin-
ton, 2008).

4.5. DCGAN for Lesion Simulation

In this work, the DCGAN was trained to generate
mammographic lesions that look like real ones (visu-
ally indistinguishable) using 4536 mass and calcifica-
tion lesions. Other lesion classes of architectural dis-
tortion and focal asymmetry were not used because in
such classes the lesion existence in one breast location
is captured when the two breasts look asymmetric at
this location, (Samardar et al., 2002). This simultaneous
observation of both breasts was infeasible for the clas-
sifier. Horizontal then vertical random online flipping
was used as augmentation. As the complete dataset had
mammographic mass and calcification lesions (some-
times in the same patch), the GAN was trained to gener-
ate mass, calcification, or both in the same patch. These
settings have the advantage of a relatively-large dataset
where the generator can see a wide spectrum of cases
to capture the distribution. The application of this mode
is to train radiologists/observers or other specialists on
different tasks related to lesion detection and annotation
on unseen images with a considerable quality that are
hard to distinguish from real patches. This environment
has a limitation that it gives just a small part of the big

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
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picture, i.e. a patch out of the complete x-ray image.
Consequently, it might be hard to detect lesions related
to architecture asymmetry and architectural distortions
where the corresponding patch of the second breast is
needed to compare to. The resultant generators can be
used as an augmentation tool in cases where there is no
need to separate calcification from masses (considered
as one class), however, this application was not stud-
ied here in favour of mass class augmentation where
the DCGAN output has a predetermined class which
can make the process of evaluating the augmentation
effect independent from the class of the generated im-
ages, see section 4.6 for more details. In this scenario,
the GAN was trained using the hyperparameters men-
tioned in section 4.3. It is worth mentioning that long
training as well as mismatched sizes for G and D ker-
nels were useful for increasing images quality (to get
rid of checkerboard effect generated by transpose con-
volution layers) and diversity, but that should be accom-
panied by a fine-tuned learning rate decay (we used here
as mentioned before 4e−4 and 2e−4 with 1% decay every
10 and 8 epochs for G and D respectively). It is com-
mon, as observed in Figure 14, that D wins at the end
of the game by obtaining a smaller loss with respect to
G, however, this should not be very early in the train-
ing, otherwise, the generator will find difficulty learn-
ing from small gradients, which ends up with the GAN
diverging. Figure 12 in annex 9.1 includes two 8 × 8
batches, showing real and generated images.

4.6. Mass Lesion Augmentation Using Different Train-
ing Sizes

The aim of this method is to analyse the following
points:

• The effect of increasing the size of the training set
of the positive class, by adding real images ,on the
performance of a classifier keeping the same im-
balance ratio (IR equals to 1:10).

• How the random online augmentation (horizontal
flipping followed by vertical flipping with a proba-
bility of 0.5 for each) affects the classification per-
formance in this unbalanced environment.

• The change in classification performance af-
ter adding the DCGAN-generated images to the
dataset keeping fixed the augmentation ratio AF
= 1.5 and IR= 10 again as a function of the train-
ing size.

To clarify all previous points, a framework is proposed
(see Figure 7) which was inspired by the works of Frid-
Adar et al. (2018), Bowles et al. (2018), and Douzas
and Bacao (2018), where in in the latter they trained
the GAN on the training set of the classifier to avoid
generating images that might have features similar to
the test/validation images’. We combine the idea of

studying the effect of changing the number of the im-
ages used to train the GAN, as well as applying con-
ventional augmentation methods on the generated im-
ages. This was examined on a small scale in Frid-Adar
et al. (2018) due to lack of data, while in this work
we had the advantage of using a larger dataset. The
dataset used to train the DCGAN was a subset of the
dataset described in section 3.4, where 2215 mass le-
sion patches (positive class) were selected, including
benign and malignant cases. After extracting the test
set (33.3%), the remaining part was divided into train-
ing and validation (60%, 6.6%, respectively), and fi-
nally the training part was divided into six overlapping
smaller sets: {Pk; k ∈ {100, 250, 500, 750, 1000, 1300}},
where the subscripts refer to the size of the subset.
All these subsets were picked randomly with a fixed
seed for the random generator so that each set is con-
tained in the next larger one. For instance, P100 ⊂

P250 ⊂ P500, see the dataset and sampler part of Fig-
ure 7. Regarding the negative class (normal tissue
patches), a similar procedure was applied on a 22K sub-
set selected randomly out of the 147K complete nor-
mal tissue dataset to have an IR of 1:10. Six overlap-
ping negative subsets with the size ten times the pos-
itive class were created to use later on in classifica-
tion, namely {N1000,N2500,N5000,N7500,N10000,N13000}.
For training the DCGAN, one positive set Pk was used
at a time, and due to the use of relatively smaller
datasets than the one used in section 4.5, a few hy-
perparameters were changed: horizontal then vertical
flipping was applied as before, in addition to jitter-
ing the brightness and contrast by a random amount
picked from the range [−5, +5] every iteration. Fur-
thermore, the DCGAN was trained for 1000 epochs
to give the generator enough time to learn the dis-
tribution. These settings were fixed for any k. Af-
ter training six DCGANs independently, six generators
{G100,G250,G500,G750,G1000,G1300} were ready to gen-
erate synthetic mammographic patches (size 128×128),
see the top right part of the figure. Thereafter, four clas-
sification modes were investigated (see the middle part
of Figure 7), namely:

• ORG: in this mode, the input for the classifier is
Pk as positive images plus Nk as negative. The aim
of this mode was to see how changing the positive
class size affects the overall classification perfor-
mance keeping IR 10 for all cases.

• Aug ORG: as the name suggests, augmented orig-
inal images were used as input to the classifier.
By augmentation here we mean random horizon-
tal then vertical flipping ending up with one of the
following cases:

– Only horizontal flipping.

– Only vertical flipping.
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Figure 7: The proposed framework for evaluating the DCGAN when used in data augmentation for supporting the minority class in an unbalanced
dataset.

– Both horizontal and vertical flipping.

– No flipping.

No intensity or rotation/translation augmentation
were introduced here to preserve the content from
including any padding or interpolation. The aim of
this mode is to study the effect of conventional aug-
mentation on the unbalanced classification prob-
lem as a function of the the positive class size ,
keeping the imbalance ratio fixed to 10.

• GAN: the input to the classifier in this mode was
k real lesion + 1.5 × k synthetic images generated
by Gk as the positive class, and 10 × k normal tis-
sue patches as the negative class. The aim of this
mode was to analyse the effect of combining the
synthetically-generated images with the real im-
ages to support the under-represented positive class
in the classification problem. 1.5 × k was selected
to give Gk the chance to reflect the learned distri-
bution with a reasonable diversity. The aim of this
mode was to inspect the effect of using multiple
DCGANs trained on datasets with different sizes
on the classification problem.

• Aug GAN: in this mode, the 1.5 × k generated im-
ages as well as the real ones were augmented on
the fly by random flipping (same as Aug ORG) to
extend more the distribution of the input images.
The aim was to see whether flipping the synthetic
images would add any valuable features to the clas-
sifier.

Flipping is considered as an extrapolation method as op-
posed to GANs which are considered as an interpola-
tion method (Bowles et al., 2018). To use flipping only
was inspired by the works of Kamnitsas et al. (2017)
and Wu et al. (2018), where they preferred to use re-
flection only to preserve the architecture without us-
ing any intensity perturbations. This is particular for
medical images where other affine transformations can
change some discriminative features in the patch, for
instance rotation might have introduced padding pixels
while zooming can change the lesion size which may
have an impact on decision making. The classifier used
here is depicted in Figure 7 the bottom right part. It has
the same network architecture as the DCGAN discrimi-
nator apart from number of channels, see section 4.4.2.
It was trained with the same parameters but for fewer
epochs and binary cross entropy as a loss function (in-
stead of the adversarial loss in DCGAN equation (1)),
where for all modes, 20 epochs were enough to reach al-
most 100% training accuracy. Knowing that the dataset
is imbalanced, using accuracy might be misleading and
might give very high values even for a naive classifier
that outputs the negative label always. As a result, F1
score was proposed to be used as a metric which gives
equal importance to precision and recall, see equation
(4).

F1 = 2 ×
Precision × Recall
Precision + Recall

(4)

To avoid an overfit classifier, for each mode, the model
with the best validation F1 score was saved for testing
phase. As can be seen in Figure 7, the test and validation
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sets were fixed for all k. 3-fold cross validation was used
to acquire reliable results.

5. Results

5.1. Lesion Simulation

After training the DCGAN for 1000 epochs with a
decaying learning rate, D has been trained to discern
real from generated lesions, and in the same time, G
has learned how to generate lesions that look like real
ones by getting skilled more and more as the train-
ing progresses. In line with FID concept explained be-
fore (see section 4.4.1), Figure 8 shows how the value
of FID changes during training where it starts with a
value around 120 and drops drastically until it reaches a
plateau around 20 where generated and real images look
similar for Inception-v3 network. The orange line rep-
resenting average FID is used to show the trend where
the more the DCGAN is trained the lower the average
FID is until convergence. This can be explained by
the fact that at the beginning of the training process,
the quality of the generated images is far from the real
ones’ which makes the discrimination task easy for D,
so it gives very low realism probabilities for G outputs,
consequently G learns quickly, see Figure 5 to see the
fast-moving loss function at the beginning (the blue line
causes larger gradients and faster learning). In testing
phase, the trained G is capable of generating any num-
ber of images by forwarding the same number of ran-
dom vectors. A batch of 64 generated images is shown
along with the same number of real ones in annex 9.1.

Figure 8: FID progress along the training process. The orange line
represents the average FID over five neighbouring points where the
blue values were recorded every 10 epochs.

5.2. Mass Lesion Augmentation Using Different Train-
ing Sizes

The results for methods in section 4.6 are presented
here where the effect of adding different numbers of
generated mass lesions as well as real ones was analysed

Figure 9: Examining F1 score as a function of the real minority train-
ing set size when adding 150% generated images and keeping the
same imbalance ratio 1:10. The horizontal axis represents the size
of the training set of the positive class (mass lesions). ORG stands for
the original dataset without any kind of augmentation, Aug ORG rep-
resents using the online random flipping on the original dataset, GAN
means combining the original dataset with the generated images with-
out augmentation, Aug GAN refers to online flipping applied on real
(positive and negative) and DCGAN-generated images.

in an imbalanced environment with IR = 10 over three
cross validation folds. By looking at Figure 9, the blue
line representing mode ORG is behaving in a way that
shows that adding more real images helps the classifier
to perform better regarding F1 score where it keeps im-
proving until k=750 where it saturates after improving
F1 score by approximately 0.1 compared to when using
100 images.

The green line represents the F1 score when adding
synthetic images to the real ones (GAN mode). The
amount of added images differs from one case to another
but always using 1.5 × k as augmentation factor. Com-
pared to the blue line, the green one shows faster im-
provements which shows that the generator has learned
to unlock unseen images in the real distribution which
help the classifier to distinguish lesions among normal
tissue. At 100, as the plot shows, the improvements
were fairly existing which is due to lack of enough sam-
ples for the DCGAN to learn the distribution of the
real data. As this amount increases to 250, the im-
provement over ORG increases drastically pointing at
a better-performing G. This improvement continued un-
til 1000 where the classifier was no more starving for
data. Surprisingly, at 1300, the DCGAN could generate
samples visually similar to the real ones (see annex 9.4
for an illustration of the effect of increasing the training
set size on the generated images by DCGAN). However,
this had a negative impact on the classification prob-
lem which might be due to overfitting. Additionally, the
amount generated at 1300 (1.5 × 1300 = 1950) is the
largest among all experiments which might have caused
a drop in diversity. Moving on to the orange line rep-
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Table 3: Area Under the ROC Curve (AUC) for different modes and training sizes (k), the bold-faced values are the highest.

Mode Training Size
100 250 500 750 1000 1300

ORG 0.9836 0.9848 0.9896 0.999 0.9989 0.9989
GAN 0.9843 0.9902 0.9984 0.9997 0.9993 0.9987

Aug ORG 0.9877 0.9896 0.9982 0.9998 0.9997 0.9999
Aug GAN 0.9902 0.9984 0.9996 0.9990 0.9998 0.9999

resenting Aug ORG mode where online horizontal and
vertical flipping with probability 0.5 was applied on ev-
ery batch. Flipping was clearly outperforming GAN due
to lack of training images for the DCGAN as opposed
to Aug ORG where flipping algorithm is independent of
any training. As the number of images, extrapolated im-
ages were increasing until 750 where the improvement
reached a plateau as the classifier became less hungry
to data. Aug ORG and GAN performed approximately
equally in the region between the two extremes (100,
1300) with the difference becoming more obvious as k
increases (see 750, 1000, and 1300). Finally, the red
line represents Aug GAN where the random flipping is
applied online on the combined real and synthetically-
generated images ending up with interpolation and ex-
trapolation happening simultaneously. As can be seen
in the figure, this mode outperformed all other modes.
The amount of improvement was the largest at 250 and
500 as the classifier was in need for positive data, and
became smaller as the classifier has seen enough sam-
ples at 750 and 1000). The last point at 1300 was less
performing than Aug ORG by a negligible amount. The
Area Under the ROC Curve (AUC) was used as an addi-
tional metric to compare the performance with the dif-
ferent modes and training sizes. AUC values are re-
ported in Table 3, the highlighted values are for the
highest of the corresponding size. It can be easily seen
from the table that Aug GAN outperforms other modes
where the highest improvement was for size 250 with
0.0136 over ORG mode while the best improvement
for Aug ORG was for the same size by 0.0047 over
ORG mode. Moreover, to analyse the distribution of
the synthetically-generated images and to compare it to
the distribution of the real images, t-SNE was used to
reduce the dimensionality of the image space by mov-
ing to the 2D feature space. Figure 10 can be used to
visualize the distributions for one case at k = 500. The
algorithm was run for a maximum number of iterations
of 4000 and 250 as the perplexity. Similarly, Figure 11
shows the distributions of real and fake masses along
with normal tissue patches. It should be noted that this
algorithm uses random initialization every time it is run,
as a result, it might show different allocations for the
samples in the figure for different runs. The input for the
algorithm is the patches in the original space (128×128)
for both real and synthetic images.

5.3. Experimental Settings

All models were built using Pytorch 3 package by
Paszke et al. (2017) with the support of online aug-
mentation. Training a DCGAN then a classifier took
on average two hours on NVIDIA TITAN X with 12
GB RAM using CUDA ver.9.0. The generator of the
DCGAN had 5M parameters, while the discriminator
had 8.9M. All these experiments were carried out at VI-
COROB lab at the University of Girona using a work-
station running Linux Ubuntu 18.04.

6. Discussion

Regarding the results for lesion simulation, it has
been shown that DCGAN could generate images that
have considerable realism and diversity by training the
DCGAN on a dataset that has a sufficient number of ex-
amples. The generator could capture the distribution of
the real images (px) and generate samples that are sam-
pled from pgen which is close to the original one. Figure
12 in Annex 9.1 can be used for a qualitative evalua-
tion of the generated images. This figure shows one real
batch of 64 mass lesions (top) along with the same num-
ber of synthetic ones (bottom). The size of the training
set was 4536 mass and micro calcification lesions. For
training details, see section 4.3. By comparing the top
and the bottom batches, it can be seen that the gener-
ator has learned how to generate mass patches as well
as mass accompanied with calcification (see real lesion
(3,1) and fake (6,7)). Furthermore, this figure shows that
the synthetic batch has reasonable diversity ending up in
lesions with different shapes and contrast levels. Some
of the shown synthetic examples seem to contain either
mass only (see (1,5), (6,4), (7,3)), calcification only (see
(6,2) and (8,2)), or a combination of mass and calcifica-
tion (see (5,7), (4,2)). While other works showed how
much observers were fooled when distinguishing real
among fake images, in this work we used FID in Fig-
ure 8 as an objective evaluation method where the gen-
erated images had similar distributions of feature maps
at the 2048-unit layer of Inception-v3. Some oscilla-
tions in FID values appear due to G being learning. As
was mentioned in the talk of Goodfellow (2016), using

3code and trained generators are available at https://github.
com/Basel1991/Projects/tree/master/master_thesis

https://github.com/Basel1991/Projects/tree/master/master_thesis
https://github.com/Basel1991/Projects/tree/master/master_thesis
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Figure 10: t-SNE analysis for real (red x) and generated (green circles) mass patches distributions, where X1 and X2 axes represent the first and
second t-SNE components, respectively.

different kernels between the discriminator and gener-
ator along with long training was useful to remove the
checkerboard effect and improve the diversity. With re-
spect to evaluating the simulated lesions, we proposed
a framework where we train the DCGAN on different-
size subsets of the mass dataset (inspired by the work
of Frid-Adar et al. (2018)), the trained generators were
used to generate synthetic lesions that were used to aug-
ment an imbalanced classification problem (normal tis-
sue as the dominant negative class). It was shown that
the improvement DCGAN introduced was related to the
dataset size. The synthetic images did not improve the
performance at a very early stage (very small dataset
of 100 images), it did not cause any harm at this stage
though. However, the improvement increased with the
size of the training set. Moreover, and in line with the
results of Bowles et al. (2018), the generated images did
some harm for the classifier performance where the F1
score dropped when using the largest subset (P1300) im-
ages for training, this suggests that there is a limit for the
training set size to assure non-harmful GANs. Aligned
with what was interestingly mentioned in Bowles et al.
(2018), applying traditional flipping (online and ran-
dom) method on the real and synthetic images (posi-
tive and negative classes) was powerful enough to make
DCGAN-generated images helpful regardless the size
of the training set (see the red line in Figure 9 for after
augmentation and the green one for without augmenta-
tion). Additionally, we could show that using the real
images only, increasing the size of the training set had
a similar impact of enhancing the F1 score but with a
much smaller rate with a tipping point where the im-
provement stops. The distribution of the generated im-
ages was analysed and compared to real ones in Figure
10 where it is clear that synthetic images support the dis-

tribution of the real ones by filling the gaps in a realistic
way as opposed to naive methods which do the averag-
ing of features as in SMOTE and its variations. Fig-
ure 11 shows the distribution of real masses, synthetic
masses, and normal tissue patches. This figure can show
that by using synthetic images, the classifier can gener-
alise more by seeing more examples sampled from the
distribution of the minority class (a linear boundary can
separate the two distributions). On the one hand, DC-
GAN could detect the features of the main distribution
giving less support to outliers (see the arrow in Fig-
ure 11), traditional flipping, on the other hand, does not
have the ability to distinguish between inliers (main dis-
tribution) and outliers (see the green distribution around
the dotted arrow in Figure 13 in Annex 9.3) which can
be linked to the improvement in Aug GAN over all other
methods in Figure 9 and Table 3. Matches, where at
least one real and one synthetic samples align perfectly
in the t-SNE space (see the solid arrow in Figure 13),
are more common in traditional augmentation than in
synthetic images due to the fact that the generator does
not see the training images.

7. Conclusions

In this study, we used a modified version of DC-
GAN to generate realistic mammographic lesions with
dimensions 128 × 128 pixels that have acceptable di-
versity. To see the effect of using these synthetically-
generated images in action, we simulated an environ-
ment where a dataset of mass lesions (as the positive
class) and normal tissue (as the negative class) had to
be classified with an imbalance ratio of 10. The clas-
sification performance was evaluated using F1 score
and AUC at six different sizes of the positive dataset
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Figure 11: t-SNE analysis for real (red cross) and generated (green circle) mass as well as normal tissue (purple triangle, the negative majority
class) patches distributions, where X1 and X2 axes represent the first and second t-SNE components, respectively.

(100, 250, 500, 750, 1000, 1300) keeping the same im-
balance ratio, and validated using 3-fold cross valida-
tion. We could show that GANs-generated images when
used along with online random horizontal then vertical
reflection (named as Aug GAN) were never harmful and
could provide a significant improvement which is higher
than when using GAN or flipping individually. This
improvement was by the fact that at each size of the
training set, AUG GAN mode was higher than all other
modes resulting in an F1 improvement of approximately
(2%, 9%, 8%, 2%, 2%, 2%) over using real images only
and approximately (0%, 6%, 2%, 0.5%, 0%, 0%) over
using flipping only. Regarding AUC, we could achieve
a max improvement of 0.013 over using real images
only. Moreover, using synthetic images only as aug-
mentation, there was a limitation at the very small or
very large size of the training set where there was either
no improvement or a drop in the performance, respec-
tively, compared to real images only. Traditional image
flipping augmentation did not suffer from such flaws
even without the need for training but could not reach
the same level of improvement that Aug GAN offered.
To sum up, GANs are a powerful tool that can be used
to generate synthetic images to be used in a variety of
applications including augmenting unbalanced classifi-
cation problems and unlocking realistic unseen images.
However, they have to be trained carefully and better be
accompanied with traditional flipping augmentation. In
the future, we plan to extend our work to see the effect of
using the trained generators on supporting mass detec-
tion problems using a different dataset (INbreast). Gen-
erating larger patches or even complete mammograms
can be explored as well. Furthermore, we are collabo-
rating with radiologists from the Autonomous Univer-
sity of Barcelona to get realism evaluations of the gen-

erated mass patches.
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9. Annex

In these annexes, we show the outcome of four ex-
periments. First, we present a real and a fake batches
of 64 images each, where the fake ones were gener-
ated via a DCGAN trained on the complete training
dataset (4536 mass + calcification). Second, a figure
that shows the progress of training the DCGAN accom-
panied with the loss plot and a batch of 4 fake im-
ages enhancement during training. Third, we include
t-SNE analysis for Aug ORG showing real and aug-
mented masses as well as normal tissue in the 2D feature
space of t-SNE. Fourth and last, we show 25 random
samples generated from six different generators trained
on (100, 250, 500, 750, 1000, 1300) images individually
and we compare the quality and diversity.

9.1. A Real And A Fake Batch
In this section, using Figure 12, we show one real

batch of 64 mass lesions (top) along with the same num-
ber of fake ones (bottom) generated by a generator that
was trained on 4536 images (mass + calcification).

9.2. GAN Training Progress
Here we show the progress of G and D loss during

training using the mass + calcification dataset of size
4536. The reflection on images realism and diversity is
explored in Figure 14 where it shows G and D average
loss along with samples of 4 images generated from a
fixed noise batch. By looking at the beginning of the
plot (iteration 0), the loss of G starts high because it
starts with random output which is relatively easy even
for an inexperienced discriminator to realise that it is
not real. In this case, the output of D for the fake in-
put is very low (low realism probability). At iteration
0, D has just started to learn, however, the process of
distinguishing real patches among real ones is consid-
ered easy, however, this becomes tougher when G starts
learning. During iterations 0 to 20,000, G is learning
from its mistakes by modifying the weights relatively
to D output and competing with D which has a merely-
constant average loss. A large drop of more than 70%
in FID is due to the large gradients of NS loss (see Fig-
ure 5). it can be seen from the difference in quality be-
tween the batches at epoch 140 and epoch 420 where the
checkerboard effect was removed with an increase in re-
alism and a decrease in FID. At iteration 25,000, D be-
comes almost professional and no more gets fooled by
G output (D loss is monotonically decreasing), on the
contrary, G loss starts increasing but keeps improving
(see the image at epoch 700 where the lesions have been
improved in terms of contrast and size). Iterations from
50K until 70K have lesser impact due to the learning
rate here being too small compared to the early stages,
still, this period had a subtle contribution to improve-
ments in image diversity. By looking at FID values,
it is clear that the decrease was exponentially decaying

(along with the learning rate). At the end, the gener-
ator seems as it has lost the game by getting the loss
settles at a relatively high value. It should be kept in
mind here that the real label was randomly chosen ev-
ery epoch which had the impact of the oscillations in
the losses. The discriminator could keep detecting real
images among fake ones ending up winning the game,
this is fine as G had enough time to learn.

9.3. t-SNE Analysis for Aug ORG

Figure 13 shows the embeddings for 500 real mass
patches, 750 with random flipping, and 5K normal tis-
sue (negative majority).

9.4. A Sample From Each Gk

In this section, the aim is to evaluate subjectively
the effect of increasing the training set size on the re-
alism and diversity of the generated images. Figure 15
shows six batches containing 25 images each, batches
from top to bottom and left to right were generated
by G100,G250,G500,G750,G1000,G1300 (see section 4.6).
Starting with 100, this batch shows a low diversity (low
recall) in lesions shapes with some similarity between
lesions (see batch 100, (1,4) and (3,1), (3,3) and (4,3)).
This suggests a mode collapse situation with the realism
being not high. Moving on to batch 250, it is noticeable
that lesions here have more contrast than before with
some new shapes, however, there is still some patterns
that are repeated between lesions (see batch 250 (1,1),
(3,3) and (3,4)). Diversity keeps improving as well as
realism when reaching to 500 and 750 where it is hard
to detect such patterns. It can be seen that at 750 the
generator has learned to sample lesions with more de-
tailed architectures than before in batch 100. Batches
1000 and 1300 are where the generator starts to gener-
ate images that are hard to distinguish from real ones.
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Figure 12: Two batches of real and fake images. The top one is the real batch while the bottom one is the fake one. Indices used here are of the
shape (i,j), where i is the row index, j is the column index and the top left being (1,1).
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2

Figure 13: t-SNE distributions for real masses, flipped masses, and normal tissue patches. A red x represents a real mass patch, a green circle
represents a flipped mass (horizontal, vertical, both, or none), purple triangles represent normal tissue patch. The dotted arrow points at an outlier
while the solid one points at a match.
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Figure 14: GAN progress, showing 5 batches of generated images at different points in the training process, these images were taken from epochs
0, 140, 420, 700, and 990, where the input was fixed to four latent vectors. The horizontal axis is the training iterations, the vertical one is for
DCGAN adversarial loss, see equations (1,2). FID values are approximated and provided for each case.
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Figure 15: From top to bottom and left to right, 25 random samples generated from Gk : k = {100, 250, 500, 750, 1000, 1300}. This figure is to
show the relationship between image quality and diversity, and number of training images for the DCGAN. Indices used here are of the shape (i,j),
where i is the row index, j is the column index and the top left being (1,1).
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